# DNA Analysis Techniques for Molecular Genealogy 

Luke Hutchison (lukeh@email.byu.edu)
Project Supervisor: Scott R. Woodward

## Mission: <br> The BYU Center for Molecular Genealogy

To establish the world's most comprehensive genetic and genealogical database.

To create tools for reconstruction of genealogies from DNA

- To establish genetic links between families throughout the world.


## Molecular Genealogiy: Process

100,000 DNA samples and genealogies are being collected from 500 different populations

Common ancestors and population structure are inferred [population and quantitative genetics]

- A searchable database is being produced for DNA-based genealogical research



## Common Ancestor



## What is the Basis of Molecular Geneallogy?

Each indlividual carries within their DNA a record of who they are and how they are related to all other people.

You received all of your DNA from your two parents ( $50 \%$ from each).

- Specific regions of DNA have properties that can:
- Identify an individual
- Link them to a family
- Identify extended family groups (tribes or clans)


## 3 maior types of genetic data

Y Chromosome

- Males only, paternal inheritance
- Haploid, none or little recombination
- $0.51 \%$ of an individual's total genetic information
- Mitochondrial DNA
- Both males and females, maternal inheritance
- Haploid, none or little recombination
- $0.0006 \%$ of an individual's total genetic information
- Autosomal (Nuclear)
- Both males and females, inherited equally from both parents
- Diploid, undergoes recombination at each generation
- $>99 \%$ of your genetic information


Autosomal (nuclear)

Mitochondrial

## Genotypic and Genealogical data

8562276280261273162166111125205205207213134134170174222224265269266274118122141149134138175179187195 8563288291271275148160127127209211211223136150174178224224261273268268106120125133132138176178201203 8564272291259267144156113127209211207211142154152174218224269273272272100122149149140140174179191201 8565291295263275148160123127207211217217134136174174220224269309262272106120143147136138171175191195 8566271271263271162164111113207209209213150150174178212216273277258262102118127145138140173175191195 $8567-271283269275162164111127207209207217150156170178212216273309258270102104143145130138173175187191$

|  | 0.1 | 0.125 NorthAmerica | 0.125 NorthAmer | 0.125 NorthAmerica | 0.125 NorthAmerica | 0.125 NorthAmerica | 25 Unknown | 0.125 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 855018 Unkno | 0.125 Unknow | 0.125 Unknown | 0.125 Unknown | 0.12 | 0.125 Unknown | 0.125 Unknow | 0.125 Unkno | 0.125 |
| 855118 NorthAmeria | 0.125 NorthAmer | 0.125 NorthAmeria | 0.125 NorthAmeria | 0.125 Europe | 0.125 Europe | 0.125 NorthAmerica | 0.125 NorthAmerica |  |
| 855218 Europe | 0.125 Europe | 0.125 Unknown | 0.125 NorthAmerica | 0.125 NorthAme | 0.125 NorthAmerica | 0.125 NorthAmerica | 0.125 NorthAmerica | 0.125 |
| 855318 Pacificlsland | 0.125 Paciididslan | 0.125 Paciifidsland | 0.125 Pacificlsland | 0.125 Pacificlsland | 0.125 Pacificlsla | 0.125 Pacificlsland | 0.125 Pacificlsland | 0.125 |
| 855418 Pacificlslano | 0.125 Paciicicla | 0.125 Unknown | 0.125 Pacificlsla | . 125 Paciiclsla | 0.125 Paciicicla | 0.125 Paciicl | 0.125 Paciiciclsa |  |

## Sequence and Length polymorphisms

(a) Sequence polymorphism

(b) Length polymorphism
(AATG)(AATG)(AATG)-
3 repeats
--------(AATG)(AATG)-------
2 repeats

## Iypes of DNA Data Extracted

Paiir of alleles (numbers of repeats) for a locus (e.g.. 121,123)

- Linked loci (close together in chromosome)
- Unlinked loci (distant enough from each other to be genetically unrelated, due to the high probability of a crossover occurring between the markers; the presence of one does not imply the presence of the other)


## Linked Loci: "Haplotypes"

The probabilitity of a crossover event occurring in the middlle of a haplotype is low, since the loci are tightly linked.


- Haplotypes are therefore likely to be passed down intact for many generations.


## Haplotyping

- Problem: Correct order of the genetic information in a pair is unknown (which allele came from which parental chromosome?):

$$
121,123 \text { or } 123,121 \text { ? }
$$

- The problem compounds for linked loci:

| $121 \mid 123$ | $121 \mid 123$ | $123 \mid 121$ | $\}$ |
| :--- | :--- | :--- | :--- |
| $142 \mid 144$ | $144 \mid 142$ | $142 \mid 144$ | $\} \ldots$ |
| $115 \mid 119$ | $115 \mid 119$ | $115 \mid 119$ | $\}$ |$\left(\times 2^{3}=8\right)$

- Finding which alleles occur together on the same chromosome for linked loci (the haplotypes) is called hapotyping. The alignment is called the phase.


## Properties of Haplotypes

Populations which do not inter-breed each develop a distinctive distribution of haplotypes.

- Haplotypes may eventually appear (due to mutation and/or crossover) that do not exist in any other population
- Haplotypes give much more discerning power than alleles alone, since there are many possible haplotypes given a set of possible alleles at each locus


## Haplotypingl: A Cyclic Problem

We could figure out the most likely phase for the alleles in a haplotype if we knew the haplotype distributions of the parent populations

## (?)

- We could figure out the haplotype distributions of the parent populations if we knew the correct phase of the alleles


## Haplotyping: A Cyclic Solution

(1) First guess for phase probs: all equal $(0.125)$
(3), (5), ... Estimate phase probabilities based on the current estimate of population haplotype probabilities

- (2), (4), ... Estimate population haplotype probabilities based on the current estimate of phase probabilities


## Haplotyping: Results

Convergence typically achieved in 3-7 iterations
Difficult to judge accuracy since nobody knows how to get the true correct answer!

- Previous researchers' attempts on simulated data: 50-60\% accuracy
- Our algorithm on (different) simulated data: 97\%
- Our algorithm on real data (accuracy measured by 'spiking' with CEPH data): 88-93\%


## How to Contact Us

E-mail: molecular-genealogy@email.byu.edu

Phone:

788 WIDB
BYU
Provo, UT
84602
801-378

Mail:


Web:
http://molecular-genealogy.byu.edu

