Transcription, transliteration, transduction, and translation

A typology of crosslinguistic name representation strategies

Deryle Lonsdale

BYU Linguistics

lonz@byu.edu

- Many NLP applications treat personal names
 - (CL)IR of text (MUC, TREC, TIPSTER)
 - (CL)IR of spoken documents (TDT)
 - Information extraction (ACE)
 - i18n, l10n
 - OCR/digitization
 - Semantic Web annotation
 - Homeland security and DoD (Aladdin, REFLEX) and, of course,
 - Family history research (PAF, TMG, etc.)

The problem

 Storing and accessing proper nouns crosslinguistically

- Other types of proper nouns (organizations, countries, etc.)
- Position and title modifiers
- Selection and ordering of name components (surname, patronymics, etc.)
- Nicknames and hypocoristics
- Morphological variants (case, honorifics)
- Coreference, reduced forms, subsequent mentions

- Scope: some 6,000 languages
- Various types of writing systems
- Conventions: culturally/linguistically set
- Crosslinguistic: migrations, minorities
- Diachrony: spelling changes over time
- Innovation: names are continually invented
- Borrowings: names cross barriers

- Alphabetic: (roughly) one symbol / sound
 - Roman (Bush), Armenian (μάοβ), Georgian, etc.
- Syllabic: (usually) one symbol / syllable
 - Hiragana, Katakana (ブッシュ), Cherokee, etc.
- Abugidic (alphasyllabic): CV*
 - Devanagari (buS), Inuktitut, Lao, Thai, Tibetan, etc.
- Logographic: (roughly) one symbol / word
 - Hieroglyphs, Hieratic, Cuneiform, Hanzi (布什), etc.

- Hangul
 - underlyingly alphabetic
 - sounds are arranged compositionally into syllabic symbols (부시)
- Abjads
 - alphabetic, but without (some/all) vocalization
 - e.g. Arabic, Hebrew, Persian (بوش)

Normalization

- Direction
 - left-right vs. right-left
 - horizontal vs. vertical
 - boustrophedonic
- Case
 - DeVon vs. Devon
- Vocalization
 - McConnell, St. John
- Diacritics
 - Étienne vs. Etienne
- Punctuation
- Abbreviations

- Character sets, fonts, glyphs
- Input/output (keyboard, display)
- Collation (ordering, alphabetization)

- Don't bother: lexical lookup
- Transcoding
- Transcription
- Transliteration
- Transduction
- Translation

Lexical lookup

- Rote, literal access (e.g. hash tables)
 - Unending, expensive lexicon management task
 - Some automation possible (bitext, text mining)
- Bush → 布殊
- Some large-scale commercial undertakings
 - Hundreds of millions of names and variants, primarily European
 - Similar efforts exist for CJK conversion via lookup

- Rote (mostly) character-by-character symbol conversion (e.g. Unix recode)
- $x44 \times 61 \times 6e \rightarrow xee \times b3 \times dd$
- Even codes within a language vary
 - 布什 (Mainland China)
 布希 (Taiwan)
 布殊 (Hong Kong)
 - Osama bin Laden: 10 Hanzi variants
- Unicode helps, but does not solve the problems

- Conversion: (spoken) words → script
 - SAMPA (ASCII)
 - International Phonetic Alphabet (linguistics)
 - Bush → bʊ∫
 - Usually spoken language = transcribed language
- Sometimes as a strategy for crosslinguistic textual conversion
- Variation is a problem: whose dialectal/idiolectal pronunciation should be used?

- Rewrite symbols of source language in target alphabet
- Bush → Буш
- Source/target sounds don't always align
 - 32 English spellings for Muammar Gaddafi
 - 6 Arabic spellings for Clinton
- Sensitive to properties of target language
 - e.g. Yuschenko vs. Iouchtchenko
- Romanization chaos: scores of schemes

- Mapping variable correspondences (transcription, transliteration), often (probabilistic) rule-based
- Implemented via algorithmic finite-state automata
 - e.g. Soundex (Russell, American, Daitch-Mokotoff), others
- Bush → buS

Alternate spellings based upon easily confused letters	American soundex alternatives	Daitch-Mokotoff soundex alternatives
Bcller, Bebler, Beiler, Belber, Belier, Bellcr, Bellen, Bellor, Boller, Bcbler, and 152 others	Beler, Beller	Aueler, Beler, Fbeler, Feler, Peler, Pfeler, Ppheler, Veler, Weler

15

- Long names: Sivaramakrishnarao,
 Sivaramakrishnan, Sivaramarao
- Implausible collapses
- Anglocentric
- Alphabetic-based
- Not very efficient distributionally

- Most widely used when logographic system is used
 - Names are rendered non-literally, non-phonemically to/from logograph (sequence)
- Great Salt Lake → 大鹽湖
- Creative, most opaque of mapping schemes

- Machine learning
 - Statistical/stochastic approaches (e.g. n-grams)
 - Entropy/noisy channel approaches
 - Rule-based transformational approaches
- String matching algorithms
 - Levenshtein edit distance (similarity measure)
 - Dynamic programming techniques
- Speech processing (recognition, TTS)
- Bitext mining, alignment metrics, indexing

- One of schemes listed previously
 - All approaches are information-losing propositions
- Hybrid approaches combining several of these
 - Pipeline results
 - Poll different engines for optimal results
- How to generalize beyond a handful of languages?

The direct model

- Pairwise conversion between specific languages
- Potentially n x m components
 - Not all pairs will likely be needed, though
- Developer expertise a problem

The pivot model

- Neutral "interlingua" or pivot
- n + m components
- What could serve as the pivot?
- Some small-scale examples exist
 - ISCII for Dravidian-script (South Asian) languages

- Neutral representation scheme
- Should address all possible writing systems
- Should assure as lossless a conversion as possible
- Should encode all necessary information
- Principled enough to allow algorithmic implementation
- Generative capability necessary
- Is it even possible to have only one pivot?

Pivot = alphabet?

- English?
 - Consistency: very bad sound/symbol mapping
 - Anglocentricity
- IPA?
 - Transparency: difficult for non-linguists
 - Comprehensive, but not totally adequate
- Logographs would be problematic

Pivot = syllabic?

- Not as intuitive to alphabet users
- Syllable definition is still debated in some languages
- Ambisyllabicity
 - Mary, Brigham, Deryle

- Need to invent character (sequences)
 - Meaning is not always obvious
- Impracticality: complexity of representation, script

An articulated pivot approach

- More than one "pivot", feed into each other
- n + m + p components
- Allows grouping of typologically similar languages
- Intra-pivot links could represent current research results (most commonly used languages)

- Rich area for current research
- The issues are daunting
- Various approaches are being implemented
- MT has tackled some of the same problems
- A principled solution might involve some type of articulated pivot
- Open annotation environment, sharable resources, algorithm libraries
- Genealogists can contribute