Mal 4:6 Using Data Mining for Record Linkage

Burdette Pixton
Christophe Giraud-Carrier
March 24, 2005

M

Mal 4:6

- Mining And Linking FOR Successful Information eXchange
- Record Linkage is:
 - the process of identifying similar people
 - a necessary step in exchanging and merging pedigrees

Probabilistic Record Linkage

- Widely used
- Scores are given for similar attributes
- Scores are combined, and a threshold is used to determine a match
- Hand-crafted scores and thresholds
- High reliance on scores

Data Mining Approach

- Let the data tell us
 - □ How to score strings
 - □ Which data attributes to use (feature selection)
 - Which threshold works the best

String Metrics

- Used to determine the similarity between two strings
- Types of metrics
 - Edit distance
 - Cost to convert s to t
 - Character-by-character comparison
 - Levenstein
 - □ Similarity
 - Compares characters within a range
 - Attempts to look at the string as a whole
 - Jaro, Jaro-Winkler
 - Phonetic
 - Works well with words that "sound alike"
 - Very common with Genealogy Databases
 - Soundex

1

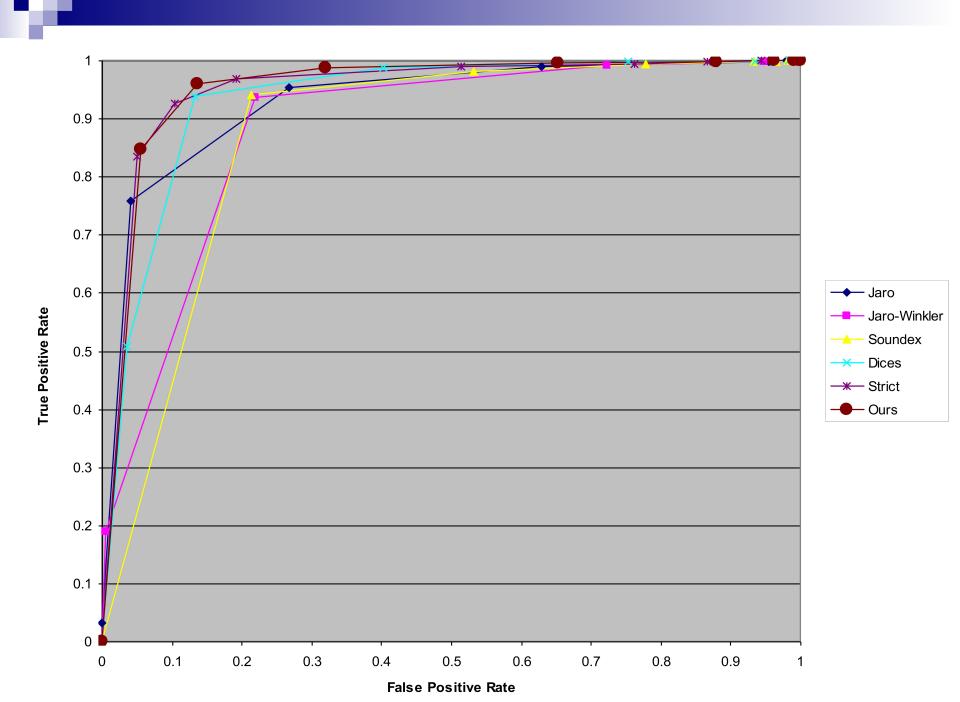
String Metrics

- Do some metrics work better on certain types of data?
 - ☐ Type of data to consider:
 - Names
 - Locations
 - Dates

×

Experiment Setup

- Genealogical database from the LDS Church's Family History Department (~5 million individuals)
- ~16,000 labeled data instances
 - <ID1><ID2><Match?>
 - Computed similarity scores across each field for each classification
 - Looked for highest score and largest difference


Results

Attribute Type	Metric	
Gender	Binary Discrimination	
Name	Soundex	
Location	Jaro	
Day	1-norm	
Month	Dice	
Year	1-norm	

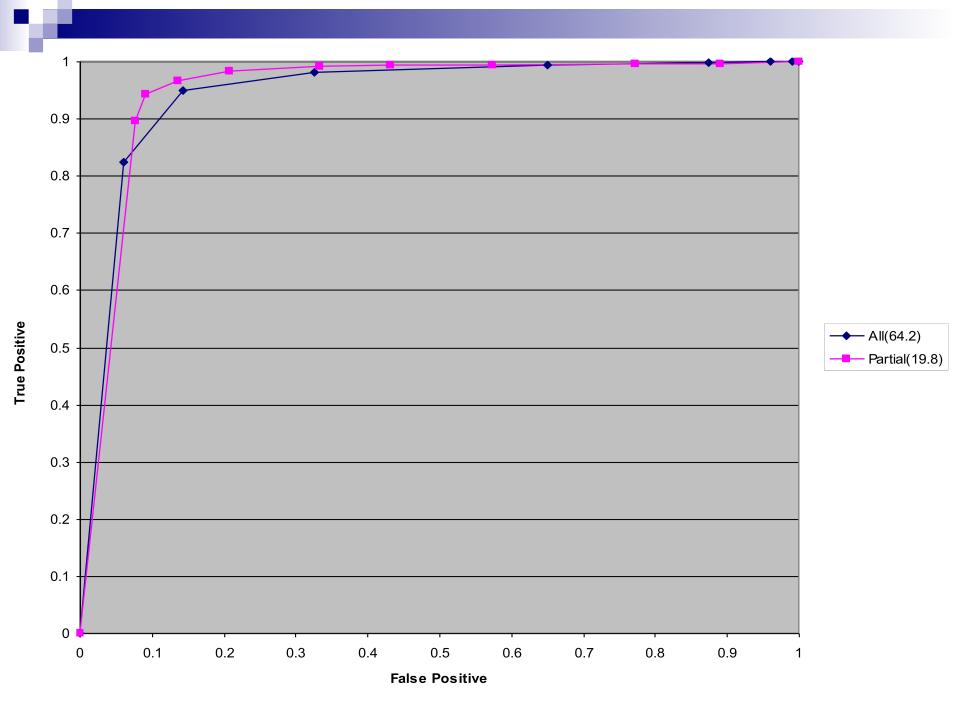
Experiment 2

How does our composite metric compare against using a single approach?

$$D(x,y) = \frac{\sum_{i} D_{i}(x_{i}, y_{i})}{N}$$

r.

Graph Matching


- Pedigrees
 - ☐ Have explicit links
 - Show relationships between entities
- Mal 4:6 use these relationships
 - □ Pedigrees can be very large
 - Which relationships/attributes should we use?

Feature Selection

Used a "scorecard" method

	Gender	1 st name	Bdate	
Self				
Father				
GrdFather				
		• • •		

Graph Based

- Matches:
 - □ Individual only
 - Recall = 95.266, Precision = 71.799
 - 4 generations
 - Recall = 94.167, Precision = 71.766
- Mismatches
 - □ Individual only
 - Recall = 86.093, Precision = 98.641
 - ☐ 4 generations
 - Recall = 86.169, Precision = 98.358

Conclusions/Future Work

- Shows promise
- Improvements
 - Collect more data
 - Can we generate more?
 - Clean data
 - □ Sample Selection
 - **1:5**
 - 1:n
 - Equal Weights
 - □ Pairwise similarity