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Abstract 

Indexing of historical records is a process that uses human effort to read text images and convert 

them into a machine readable format that facilitates search.  The Church of Jesus Christ of 

Latter-day Saints has been using volunteers to index millions of microfilm images of genealogy 

records collected throughout the world.  This indexing process is time-consuming.  We adapt a 

technique for holistic handwritten word recognition originally published by Victor Lavrenko et 

al., and use it to semi-automatically index US census record images to improve the efficiency of 

the manual indexing process used in the LDS Church's "Internet Indexing" project.  The data 

used for this project differs from Lavrenko's paper in that we recognized words in three columns 

of a structured census image instead of unconstrained handwritten words.  The approach resulted 

in 90% accuracy for the chosen columns using as little as one page of manually indexed training 

data. 

 

Introduction 

The motivation for the research described in this paper is the belief that we can improve the 

efficiency of the manual process of indexing historical records, for example the process used in 

the "Internet Indexing" project organized by the Church of Jesus Christ of Latter-day Saints [9].  

The high-level strategy used in this research was to apply existing results of computer science, 

such as machine vision and machine learning, to demonstrate that it is possible to improve the 

efficiency of human effort in transcribing such historical documents.  The specific technique we 

used was holistic handwritten word recognition based on a hidden Markov model, as described 

by a paper by Victor Lavrenko et al [1]. 

 

Related Work 

 

This project is directly related to the paper "Holistic Word Recognition for Handwritten 

Historical Documents" by Lavrenko et al. [1] published in 2004
1
.  In this paper by Lavrenko et 

                                                             
1
 The Lavrenko paper should be seen as a starting point in designing the current experiment, not as something we 

are trying to beat.  It should be obvious that our data was specifically chosen to demonstrate how easy it is do get 

high word classification accuracy on at least certain parts of a census image. 



al., unconstrained handwriting is recognized using a hidden Markov model (HMM).  The 

implementing and applying of that HMM is very similar to what we describe below in Methods.  

It differs in that they had to simplify their observation probability model because they did not 

have enough training data with respect to the large number of word shapes they were trying to 

identify.  It also differs in that they interpolated their probability model trained on one writer 

with a probability model trained on another writer to gain the value of additional training data at 

the expense of that training data not being from the same writer. 

 

The primary way in which their model differs from ours, and a point at which we required some 

creativity, is the fact that they applied an HMM to natural language sentences.  We applied the 

same kind of HMM to tabular data.  This required us to build three observation probability 

models instead of one (one for each column, instead of a single model for words at any position 

within a sentence).  But this also allowed us to be flexible in ordering these three sets of states 

within the HMM.  In other words, we could re-order the columns any way we wished in an 

attempt to discover and exploit the varying levels of dependency between different pairs of 

columns.  For example, if the text in the father’s birthplace column provides information that 

could help predict the text in the mother’s birthplace column, then it is beneficial to make sure 

these columns are adjacent to each other in the structure of the HMM.  In the end, however, the 

order did not seem to be significant (at least based on our small sample of test data).   

 

The other work from which we drew knowledge of how to implement our methods include 

papers providing more detail on how HMMs work [4], how to implement the Viterbi algorithm 

[7] used in finding the most likely sequence of word classifications for the test data and 

extracting holistic word features for the observation probability model. 

 

Methods 
 

As with most machine learning projects, the process we followed consisted of three general 

phases:  

1. A human indexer provides the labels (i.e. the classes or meanings) of handwritten words 

in some collection of documents, called the dataset. 

2. Each word image in the training data is reduced to a set of features on which a 

classification algorithm is trained. 

3. The trained algorithm is applied to automatically classify the remaining words in the 

dataset.  The accuracy of this classification process is determined by comparing the 

automatic labels to correct, hand-made labels. 

Data 
 

Three digitized images of US Census records were taken from search.labs.familysearch.org 

consisting of 123 lines.  These three images were selected so that the handwriting on all three 

was done by the same writer.  Figure 1 shows a portion of a census image, including the three 

columns we used (4, 6 and 9). 



 
Figure 1: Portion of an original census image. 

 

 
Figure 2: Portion of a thresholded census image. 

 

We used Kittler's algorithm [8] to threshold the image to produce the black and white image 

from which word rectangles were exrtracted.  Figure 2 shows the result of applying Kittler's 

algorithm to the image in Figure 1. 

 

This step is different from the Lavrenko paper in that they did not use thresholding.  Rather, they 

computed the bounding box and the profile features from the pixel values of the original 

digitized image.  This experiment also differs from Lavrenko’s in that we do no de-skewing and 

de-sloping.  Not doing this kind of pre-processing probably makes it a little harder to recognize 

words in the Relationship column because, as you can see in Figure 4, tall letters, e.g. “f” 



partially, hide the profiles of nearby short letters, e.g. “e”. 

 

We selected the following three columns among the 28 available because they had a relatively 

small number of possible values per column (i.e. a small vocabulary size) and because these 

values seemed to have high correlation with each other based on manual inspection.  For 

example, the value "wife" in the relationship column is obviously well correlated with the 

"female" sex and the "married" marital status.  Below we list the names, original order and 

number of values (vocabulary size) found in our training data for the three columns we used. 

1. Relationship to Head     4th column    14 values  

2. Sex                                 6th column      2 values  

3. Marital Status                9th column      4 values  

We semi-automatically extracted word image rectangles in the following manner.  First, we cut 

each of the three fields from each row in the three images using a free image manipulation 

program (Gimp).  These manually selected rectangles were a close approximation to the minimal 

bounding box for each word that might be produced automatically using computer vision 

techniques.  We pasted these rectangles into another image with a distinct background as shown 

in Figure 3.  Then we automatically extracted these rectangles and read them into memory where 

they could be associated with the manual transcriptions used for training and testing the 

classification system.  (To fully demonstrate the value of the methods in this paper to the process 

of indexing, we would need to demonstrate that the whole process of word rectangle extraction 

can also be done automatically.) 

 

We then manually made transcriptions of all the extracted words, providing these to the training 

and validation (or testing) algorithms as labels for the training data and validation data, 

respectively.  Then we read in the images and transcriptions into objects in the Java 

programming language to group them together, in which object we also placed the feature 

vectors, described below. 



 
Figure 3: Manually extracted bounding boxes. 

 

Observation Probability Model 
 

A hidden Markov model is composed of two kinds of probability distributions.  The first 

distribution estimates the probability of seeing a handwritten word shape given the intended 

word label.  This is called the observation probability and is discussed in this section.  The 

second probability distribution estimates the probability of seeing a word label given its position 

in a sequence of other word labels and will be discussed in the following section. 

 

In machine learning and statistical modeling, descriptions of events (e.g. handwritten word 

shape) generally must be reduced to a vector of one or more numerical values.  We will refer to 

these values as features, each of which is some kind of numerical description of the shape of a 

word.  In this research, we computed the following features from the word image rectangles 

described above.  These are the same features used in the Lavrenko paper.  Each image rectangle 

is assumed to be the minimal bounding box of the word shape. 

1. Width of the word image rectangle.  

2. Height of the word image rectangle.  

3. Aspect ratio of the word image rectangle (width / height).  

4. Area of the word image rectangle (width * height).  

5. Profile features (21 values):  

1. Upper Profile (distance from top of rectangle to first black pixel).  

2. Lower Profile (distance from bottom of rectangle to first black pixel).  

3. Projection Profile (number of black pixels appearing in each column).  



 

 
 

 
Figure 4: Profiles for the word "wife". 

 

There were 21 scalar features derived from the profiles.  We used a Discrete Fourier Transform 

(DFT) to transfer the profiles to the frequency domain.  For each profile we consider the first 4 



real and first 3 imaginary components of the DFT frequency description and use those values as 

scalar features.
2
  These scalar features provide a good approximation of the shape of the profile. 

 

All 25 feature values were computed for each word (three words per row in each census image) 

in our training and test set.
3
  Training the observation probability model consisted of computing 

means and co-variances among these feature values for each word in the training data.  During 

testing (i.e. during automatic classification of each word in the test set), observation probabilities 

were calculated based on these statistics for those words in the test set, using the following 

formula for a multi-variate normal distribution: 

  

 
 

The formula in the Lavrenko paper (above) is identical to the formula we used (below), except 

for a missing minus sign in the exponent.
4
 

 
 

In each case, the formula gives the probability of a vector of features given the identity of the 

word (i.e. the word type).  |Ci| is the determinant of the covariance matrix used to describe how 

feature values vary with respect to each other for each particular word type (hence it is 

subscripted by the word type index), and Ci
-1

 is the inverse of this covariance matrix. 

 

Transition Probability Model 
 

While a minimal machine learning approach that does not consider dependencies between 

columns might be sufficient to produce reasonable classification accuracies, we wanted to verify 

that we could demonstrate an improvement in accuracy by exploiting dependencies between the 

words in different columns of a census image.  For example, the row with the word "wife" is 

more likely to have "f" in the sex field and "m" in marital status field than it is to have “m” and 

“s”, respectively, regardless of what the word image might look like.  This may be scratching the 

surface of what improvements might be possible through exploiting such implicit dependencies.  

For example, dependencies also exist between rows in a census image.  If the head of a 

household has "Massachusetts" as his birthplace, all of his children will likely have the same 

label in the column for "Father's Birthplace".   

 

                                                             
2
 This was done to be consistent with Lavrenko’s experiments.  The reason they used fewer imaginary components 

is because the first imaginary component will always be zero, and thus provides no information.  So to be 

technically correct, we are using real components 0 through 3 and imaginary components 1 through 3. 
3
 There were a total of 25 features per word, which is the sum of 21 profile features and 4 bounding box features. 

4
 The authors of the Lavrenko paper acknowledge that their formula contained a typo within email 

correspondence. 



This recognition of inter-cell dependencies suggests possible benefits from building a model that 

classifies all the words in a row simultaneously based on all the information provided by that 

row.  There are multiple ways to do that.  In this research we have chosen the hidden Markov 

model (HMM) as a reasonable approximation to a joint probability distribution. 

 

HMMs are often used in natural language processing tasks.  There are two key differences 

between a natural language sentence and a row in a census image with respect to an HMM: 

1. A sentence has a pre-specified, natural order while the fields in a row is artificially 

ordered and are somewhat arbitrary.  We should select an ordering that is as non-arbitrary 

as possible. 

2. In an English sentence, the set of possible words that might be written at each position is 

assumed to be the same for all word positions, (though the probability of each word 

choice will vary, given the type of the previous word).  In a census row, the vocabulary 

for each column can be assumed to be a distinct set of word types.  

To address the first difference, we ran our training and testing scenario on every possible 

ordering of the chosen columns.  The results are summarized in the following section. 

 

As one reviewer correctly noted, though we think we can manually pick a column order that 

would exploit the greatest amount of inter-column dependencies, we decided to try multiple 

orderings because it’s easier to pick an optimal order based on final accuracies rather than based 

on our intuition of which column pairs should provide the best predictive power for each other.  

Furthermore, our choice to use hidden Markov model should be justified considering that it does 

not capture all possible inter-column dependencies simultaneously.  This is discussed in our 

concluding section. 

 

We used a simple bigram word probability model to estimate word probabilities with 

dependence between columns.  While part-of-speech tagging (and other sentence-based NLP 

processes) use a single bigram probability distribution, as mentioned above, we set up a separate 

transition probability distribution for each column. 

 

These are the formulas for calculating transition probabilities: 

 

 
Figure 5: Formulas for computing the probability of a word given that it is the first word in sequence (top) and for 

computing the probability of a word given the previous word in sequence. 
 

In figure 5, T is the training set, PT(w|w0) is the state transition probability for the first word in 

the sequence (given no previous word), and PT(w|v) is the state transition probability from the 

word v to the word w. 



 

 
Figure 6: A hidden Markov model is used to calculate the joint probability of a sequence.  Observed states are visual 

word feature vectors (F's); hidden states are word transcriptions or types (W's). 
 

To classify all three words in a row simultaneously, we create a hidden Markov model that 

models the transitions between columns and the generation of observed word shapes and then 

apply the Viterbi sequence labeling algorithm [7] to find the classifications that result in the 

highest joint probability: 

 
Figure 7: Joint probability formula for the HMM. 

 

Bringing both probability models together in figure 7, P(fj|wj) is the observation probabilities 

computed using the visual futures and the multi-variate Gaussian distribution, and P(wj|wj-1) is 

the bigram transition probabilities. 

 

Results 
 

To produce our first graph (Figure 8), we performed 24-fold cross validation, which consisted of 

24 separate experiments with 5 rows per test set and 118 disjoint rows per training set.  This 

approach was used to minimize the impact of the small amount of available data on both training 

and evaluation.  Classification accuracies were computed for each experiment as the number of 

correct word classifications given for each test set divided by the total number of words in the 

test set.  Implicitly, this accuracy is an average over all three columns.  These experiment 

accuracies were then averaged over all 24 experiments and are graphed in Figure 8. 

 



 
Figure 8: Classification accuracies for different models predicting the values of three fields in a census image. 

 

On the right side, the upper bound (98.4%) was computed by training and testing the classifier 

using the actual word label as the only feature.  It is not 100% because for some of the cross 

validation folds the test set contained words not present in the training set.  The two accuracies of 

the HMM (Best Order and Worst Order) were 91.2% and 89.1% respectively, and were obtained 

by applying all the methods described above on two different orderings of columns.  When we 

applied only the observation probability model, the accuracy went down about 4.5% to 85.6%.  

The lower bound on the left side (27.4%) is the result of randomly selecting a class label for each 

word. 

 

While just the visual features alone provide respectable accuracy, the addition of a Hidden 

Markov Model raises it further to a value comparable to that reported in Lavrenko et al. [1] on a 

comparably-sized vocabulary.  The primary result published in Lavrenko et al. [1] was 65%, but 

it is hard to compare our results to this number because of the vast difference in vocabulary size.  

Unconstrained handwriting is much harder to classify automatically. 

 

As can be seen, re-running the experiment with different state orders for the HMM produced 

slightly different levels of accuracy, within a range of about 2%.  The best results were achieved 

for the following order: "Marital Status → Sex → Relationship to Head".  However, we are not 

sure that these differences in accuracy are statistically significant. 

 

Next, we decomposed these classification accuracies and report accuracies for individual 

columns for the two most interesting cases: “Without HMM” and “HMM (Best Order)”.  Figure 

9 graphs this comparison. 

 



 
Figure 9: Classification accuracy for each column, with and without the transition probability model (i.e. the full 

HMM). 

 

It is interesting to note that the easiest column, sex, having just two values, does not improve 

with the addition of transition probabilities for this particular ordering;
5
 but knowing its value 

does greatly help to classify the Relationship to Head column as seen by the 13.6% boost in 

accuracy using the transition probability model.  

 

Finally, we are interested to know how much training data is actually necessary to achieve 

accuracies near 90%.  This information would be useful in determining how much more efficient 

a human indexer might be when working in such a semi-automatic labeling scenario.  The 

following two graphs plot the classification accuracy for all columns (Figure 10) and for the 

Relationship to Head column alone (Figure 11) with respect to the amount of training data used 

to train the HMM (Best Order). 

 

                                                             
5
 This is obviously related to the fact that marital status was the previous word in the model, and the value of 

marital status does not provide much information about gender.  This might not always be true, for example 

consider a dataset in which there is a larger number of widows: considering demographic statistics on women 

living longer than men, there might be a correlation between widows and the female gender. 



 
Figure 10: Classification accuracy for the HMM classifier for all three columns, plotted for varying numbers of rows 

used as training data.  Each data point represents an increase of 5 rows of training data from the previous point. 

 

It is interesting to note that for the three chosen columns, we can achieve 80% accuracy using as 

little as 10 rows of training data, and we achieve about 90% accuracy with as little as one page 

(about 50 rows) of training data. 



 
Figure 11: Classification accuracy for the HMM classifier for the Relationship to Head column, plotted for varying 

numbers of rows used as training data. 

 

Figure 11 shows that the harder column, Relationship to Head, achieves above 80% accuracy 

with as little as 35 rows of training data.  The plot appears to continue trending upward 

throughout, which suggests that additional training data beyond our three-pages would continue 

to improve its accuracy.
6
 

 

Conclusion and Future Work 
 

This research indicates that it is possible to apply state-of-the-art holistic word recognition and 

natural language processing techniques to efficiently index words from tabular, hand-written 

historical documents.  The goal was to demonstrate high enough accuracy in recognizing the 

words in a US census record that it is possible to make a manual indexing process more 

efficient.  Our achieving word classification accuracies of 90% using 50 rows of training data 

means that, instead of the human indexer needing to manually transcribe every word in the three 

chosen columns for an indefinite number of pages, the indexer would only need to label a single 

page, and then to correct a mere 10% of word labels on the subsequent pages, which labels 

would be automatically suggested by an HMM-based labeling algorithm. 

 

Future work could be conducted to quantify how much these results actually speed up the 

                                                             
6
 A special thank-you must be given to the anonymous reviewer who suggested we run the additional experiments 

needed to generate Figures 9 – 11 which we believe greatly increased the value of this study. 



indexing process.  Possible difficulties encountered in practice may come from the fact that 

retraining may be necessary for different styles of handwriting.  But these difficulties could be 

mitigated by applying other common machine vision techniques, such as image preprocessing, 

which were not explored in this research. 

 

We also believe that the results presented here could be of benefit to the semi-automatic indexing 

other kinds of structured data, not just censuses, including other kinds of tabular data with inter-

column (or inter-row) dependencies.  While our goal was not to create a working application, the 

conversion of our tool to such an application should be straightforward, provided that the step of 

identifying word image rectangles is also automated. 

 

There are a number of improvements that would be beneficial as part of future research and 

development: 

• Automate the word bounding box extraction from the census images such as has been 

done in [10].  

• Apply more preprocessing to input images: de-skew, de-slant, isolate and other image 

cleaning such as has been done in [1].  

• Use more than three columns.  We would like to ultimately allow some level of 

automation for all the columns in a census image needing to be transcribed, including the 

more difficult name and place columns.  While the relationships between other columns 

is less obvious, inter-row correlations will likely be useful for many of these other 

columns. 

• Use more training data, possibly from different census takers to assure high accuracy for 

columns with larger vocabularies.  

• Use more advanced visual scalar features in the observation probability model.  

• Consider relationships between nearby rows.  

• Use a joint probability model instead of a hidden Markov model that is not as dependent 

on column ordering.  This would overcome an apparent deficiency in the hidden Markov 

model in that the HMM only considers correlations among a subset of all pairs of 

columns.  Using a true joint probability model would find correlations among all column 

pairs simultaneously. 

• Alternatively, use tri- or higher order n-grams instead of bigrams in the transition 

probability model. 

• Apply domain knowledge to constrain the model, such as genealogical ontologies used in 

[11]. 
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