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Family Search Indexing Tool
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A Solution: On-Line Machine Learning

Holistic handwritten word recognition using a Hidden
Markov Model (HMM), based on Lavrenko et al. (2004).

HMM selects words to maximize joint probability:

* Word-feature probability model
* Word-transition probability model

Word-feature model predicts a word from its visual
features.

Word-transition model predicts a word from its
neighboring word.
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Census Images
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Extracted Fields

Manually copied bounding
rectangles

3 columns:

1. Relationship to Head (14)
2. Sex (2)

3. Marital Status (4)
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123 rows total

N-fold cross validation

N =24 (5 rows to test)




Examples to Feature Vectors

25 Numeric Features Extracted:

0 Scalar Features:
" height (h)
"width (w)
" aspect ratio (w/ h)
"area (w * h)

o Profile Features:
" projection profile
" upper/lower word profile
"7 lowest scalar values from
i




HMM and Transition Probability Model

*Probability Model:
0 Hidden Markov Model
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0 State Transition Probabilities

Pr(w|wp)

number of times w occurs in 1’
total number of words in 7"
(number of times v, w occurs in ’1')

number of times v occurs in 1’

Pr(w|v)




Observation Probability Model

O Multi-variate normal distribution:
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Accuracies
with and without HMM
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Accuracies for Separate Columns
with and without HMM




Accuracies of HMM for Varying Numbers
of Training Examples
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Accuracies of “Relationship to Head” for
Varying Numbers of Examples
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Conclusions and Future Work

10% correction rate for chosen columns after one page.
Measure indexing time.

Update models in real-time.

Columns with larger vocabularies.

More image preprocessing.

More visual features.

More dependencies among words (in different rows).

More training data.




(Questions?
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