
AUTOMATIC EXTRACTION FROM AND REASONING ABOUT
GENEALOGICAL RECORDS: A PROTOTYPE

Charla J. Woodbury,* David W. Embley,* and Stephen W. Liddle†

*Department of Computer Science
†Information Systems Department

Brigham Young University

ABSTRACT

There is great interest in family history research on the web and a great many competing
genealogical websites that contain large amounts of data-rich, unstructured, primary ge-
nealogical records. The problem is that it is so labor-intensive even after making these
records machine-readable, for humans to make the same records searchable. What we
need are computer tools that can automatically produce indices and databases from the
data-rich, unstructured genealogical records and can identify individuals and events, de-
termine relationships, and put families together. We propose here a possible solution—a
specialized ontology, built specifically for the information extraction of primary genea-
logical records, with expert logic and rules to infer genealogical facts and assemble rela-
tionship links between persons with respect to the genealogical events in their lives.

The deliverables of this solution are a set of specialized extraction ontologies used to ex-
tract parish or town records, a marked-up version of the original document, a data file of
individuals and events, and rules used to define family relationships and manipulate the
data file. The solution also provides for the ability to query over the rules and data files.
An evaluation of the prototype solution shows that the extraction has good recall and pre-
cision results and that inferred facts are correct.

1 Introduction
The many family history websites on the Internet are in high competition to provide large systems of

primary records that are easily and quickly searched by naïve users. For example, most of the major fam-
ily history websites have indexed United States census data from 1850 to 1930. Users look up names and
places by searching indices that ultimately link to digital images of the original census pages. The human
effort to enter and index information from handwritten census pages is staggering, especially considering
that many use double entry of the data to remove input errors.

So far, family history sites such as Ancestry.com [www.ancestry.com], Family Tree Maker
[www.familytreemaker.com], and Heritage Quest [www.heritagequest.com] have used large traditional
relational databases. Manual data entry is generally used to populate those databases and to link those
databases to digital images of the original primary documents. The Church of Jesus Christ of Latter-day
Saints, for example, has organized large numbers of people to manually index such projects as passenger
lists and census information.

What the industry needs is a smarter and faster way of producing searchable primary genealogical re-
cords and a better way to identify individuals and family relationships. Dallin Quass, the keynote speaker
at the 2003 Family History Technology Workshop [Qua03], stated that we need “faster image indexing.”
He also said, “People currently index images manually” by using “two independent indexers and adjudi-
cation” which involves tremendous human effort. He indicated that simplistic indexing of records and
images is not enough. We need to link records: “Given a person in a pedigree and a large set of genea-
logical records, do any of the records match?” This is a very large goal covering varied disciplines to

 2

automate indexing and linkage, but a new approach in extraction and inference offers a potential solution
to this question.

The development of the semantic web has produced toolsets that aid a computer in its ability to “un-
derstand” the meaning of a word in a particular subject domain. Scientists like Maedche et al. [MNS02]
and Embley [Emb04] have suggested using lexical knowledge, extraction rules, and modeling to add se-
mantic understanding to computer programs. Tools like ontologies with regular expressions and lexicons
can be used to organize and give meaning to large amounts of unstructured, primary genealogical records
in or out of the semantic web. And best of all, this toolset can be used today before the full rollout of the
semantic web.

The functionality of the semantic web toolset, however, needs to be expanded to add specialized do-
main expertise for genealogical records. Once this expertise is defined and corresponding ontologies are
built, then machine-readable genealogical records will be automatically indexable and fully searchable. If
fully successful, this means that every bit of genealogical information in the primary records can be used
to qualify an individual and that all of this information is automatically indexed. For example, records
often include an individual’s occupation, place of residence, or witnesses present, which are helpful in
differentiating individuals with the same name, but are rarely available in a simple name index. Expert
logic could be used to make the machine do more of the work, both for extraction and indexing, as well as
partially assembling families. Imagine researchers being able to pull partial or even whole families pre-
assembled out of a parish or town register.

The prototype described in this paper provides for the automation of the information extraction proc-
ess on unstructured machine-readable genealogical records by:

• designing appropriate primary record extraction ontologies for family history records that pro-
duce formatted RDF data in OWL files (RDF and OWL are Semantic Web standards for data and
metadata),

• adding rules and logic to the files that, when applied, properly label and begin to link primary ge-
nealogical data,

• constructing queries that show selected extracted data with the rules and logic applied, and
• testing and evaluating the results for accuracy.

2 Data Preparation
To show the capabilities of the prototype system, we chose genealogical data sources from different

geographical locations in order to include geographical diversity and allow us to determine the impact of
that diversity. The first set of data comes from Beverly vital records in the state of Massachusetts. The
second set is from British church records of South Petherton in Somersetshire, England. The third set
comes from Danish parish records of Magleby in the county of Praesto, Denmark.

Several languages are included in these selections. The Beverly, Massachusetts vital records are in
English. The South Petherton church records are in Latin and English. The Magleby parish records are in
Latin and Danish.

Different methods were used to put the original genealogical data into machine-readable format. (1)
The Beverly, Massachusetts vital records had been published and were digitized using an optical charac-
ter reader into PDF format and then converted into HTML documents using Pixillion software. (2) The
South Petherton data had been transcribed in HTML format on the www.genuki.uk web site. (3) Finally,
the Danish records for Magleby parish were transcribed from the microfilm by hand.

The final format used for extraction is HTML. The Ontology Extraction System (OntoES) tool re-
quires a web format. The British web pages were downloaded in that format. The others were quickly
reformatted to the final format using Microsoft Word.

Figure 1 is a simple example of an abridged set of the data quickly downloaded from the GENUKI
web site. It shows a list of selected marriages from South Petherton, England. Figure 2 is the same group
of marriages, but this time the data has been copied from the original Latin church record as it appeared in
the original church register.

 3

South Petherton Marriages
same day 1576 Nicholas Patch and Christian Denman
26 Jan 1605 Richard Patch and Joan Lavor
25-Sep 1613 John Elliott and Joan Woodbery
7-Aug 1615 Thomas Prime and Maria Parry
29-Jan 1616 William Woodbery and Elizabeth Patch
2-May 1620 William Hillerd and Fortu: Patch
17-Sep 1622 Nicholas Patch and Elizabeth Owsley
22-Jan 1627 Richard Patch and Mary White
15-Jan 1630 Andrew Elliott and Joan Patch
12-Feb 1639 Andrew Elliott and Joan Pitts

Figure 1. South Petherton marriages from GENUKI web page.

South Petherton Marriages

1576/1577 eodem die Nicholaus Patch Christinam Denman
26 Jan 1605 Richard Patch et Joanna Lavor
1613 Septembris 26 Johannes Elliott et Joanna Woodbery matrimonis cominguntur
1615 Augusti 7 Thoms Prime et Maria Patch matrimonio cominguntur
1616/1617 Januarij 29 Wilhelmus Woodbery et Elizabetha Patch matrimonio cominguntur
1620 Maij 2 : Wilhelmus Hillerd et Fortu: Patch
1622 Septembris 17 Nicholas Patch et Elizabetha Owsley matrimonio cominguntur
1627/1628 Januarij 22 : Richardus Patch et Maria White matrimonio cominguntur
1630/1631 Januarij 15 Andreas Elliott et Joanna Patch matrimonio cominguntur
1639/1640 Februarij 12 Andreas Elliott et Joanna Pittes matrimonio cominguntur

Figure 2. South Petherton marriages transcribed directly from the parish register.

There are several noticeable differences between the two records from South Petherton, England.

Figure 1 is in English with names given according to present-day spelling standards. Figure 2 is in Latin
as it appeared is the original parish register with the original spelling of the names as they appeared in the
parish record. Double dates were added to Figure 2 to indicate when January, February, and March en-
tries were listed at the end of the year, which today would have been listed at the beginning of the new
year.

The process described in this paper returns information according to the data given to the OntoES
system. It can be no better than the data provided.

3 Extraction Ontologies

3.1 Description and Definition of Terms for Ontology-Building
An ontology consists of descriptions of the data entities and how they are related. OntoES [ECJ+99],

developed by the Data Extraction Group at Brigham Young University, allows ontology designers to cre-
ate ontologies by using modeling techniques. The basic component of an ontology is an object set. The
objects or values in an object set are described by a data frame that encapsulates knowledge about the ap-
pearance, behavior, and context of a collection of data elements [Emb80].

Relationships among objects are captured in relationship sets. Constraints, such as cardinality con-
straints, serve to constrain object and relationship sets. Lexicons list all possible values for a particular
entity. Figure 3 gives an example. It contains part of a month-name lexicon. Multiple spellings and ab-
breviations must be anticipated in a lexicon and thus prepared before using the ontology. Once success-

 4

fully built, these lexicons can be re-used in new projects in the same domain. We added lexicons to the
ontology for given name, patronymic name (Danish only), surname, feast date, place name, occupation,
and family relationship. Problems such as abbreviations, misspelled words, and multiple languages are
handled in the lexicons.

MONTH LEXICON

1Ober
7ber
8ber
apr
april
aprilis
aug
august
augusti
augustus
avr
avril
avrilis
dec
december
decembr

decembre
decembri
feb
febr
februari
february
jan
januarij
january
jul
juli
julius
july
jun
june

Figure 3. Sample partial lexicon listing words denoting months.

3.2 Ontology Models

3.2.1 Ontology Conceptual Model

The conceptual model component of the ontology model shows object sets in boxes linked by rela-
tionship sets. Object set boxes are dashed if they are lexical (have instances that are string representations
of values such as a person’s name) and are solid if they are non-lexical (have instances that are object
identifiers identifying real-world objects such as persons. As Figure 4 shows records associate with per-
sons and events. The records being modeled in this ontology are marriage records. Data of interest for a
person includes names (and whether the name is a male name, a female name, or a name not associated
with a gender), age, occupations or titles, and residence. Data of interest for a marriage event includes
betrothal dates and marriage dates.

Figure 4. Marriage ontology.

 5

3.2.2 Ontology Instance Recognizers

Instances for each of the lexical objects may be defined using regular expressions. Figure 5 shows
the data frame editor open for the marriage date, MarDate. Notice that there is a place for value phrases
and another for keyword phrases, and that the data frame editor is currently open for value phrases. Value
phrases describe data to be extracted. For example, one of the value expressions for MarDate is:

(0\d|1\d|2\d|30|31|\d)-{Month}\.?\s*(\d\d\d\d)

This expression accepts dates like “25-Sep 1613”, the third date in Figure 1. In general it accepts dates
without day values or with day values up to 31 followed immediately by a hyphen and a month from the
month lexicon (partially shown in Figure 3) and then by potentially a period and finally by a four-digit
year.

Users can add a “hint” (here, “mardate_simplehyphen”) to name the regular expression recognizer.
As Figure 5 shows, the user has provided six recognizers for MarDate values. Each tells how to handle a
different date pattern, so that together they handle all date formats that are expected.

As Figure 5 shows, additional help for recognizing values can come from exception expressions, left-
context expressions, and right-context expressions. Exception expressions describe instance data to be
ignored. Context expressions describe text expected immediately before or after the value phrase of an
extraction target. A left-context expression describes a string expected to be at the left, but not included
in the value to be extracted. A right-context expression describes a string expected to the right, but not
included in the value to be extracted.

Figure 5. Dataframe example for the MarDate object set under Marriage ontology.

 6

Keyword phrases describe context phrases that may be near a value that would help disambiguate the
value from other values present in a record. For MarDate, the keyword recognizer is:

(\b(md\.?|marry|marriage|married|maried|wed||wedding)\b)

This helps classify a date as a marriage date if one of the keywords “md”, “marry”, “marriage”, “mar-
ried”, “married”, “wed”, or “wedding” is found close by, and it thus helps the computer to correctly dis-
ambiguate betrothal dates and marriage dates, which often occur in the same record.

3.2.3 Canonicalization of dates

The form and meaning of dates varies so much that they must be regularized before computations can
be applied. OntoES provides a way to link to methods written in Java. We created Java methods to regu-
larize dates, one for each “hint”. OntoES then used the methods to determine values and manage dates.

Although OWL and RDF have built-in data types and functions for handling dates, they are not rich
enough to handle the complexity needed for dates in the historical genealogical domain. Thus, we instead
decided to store dates as Julian dates in the form YYYYddd where YYYY is the four-digit year and ddd is
the day of the year. In this form it is relatively easy to perform computations and handle historical irregu-
larities.

Figure 6 shows how to declare functions in OntoES to convert recognized strings to internal values of
some type and how to convert internal values to some standard string for value display. OntoES refers to
the process as “canonicalization” because it standardizes instance values, converting the many ways of
representing a value in writing to a single value of a built-in type and providing a single, uniform way of
displaying the value when the system displays it. The canonicalization interface in OntoES identifies the
Java method for changing the date to YYYYddd for MarDate, and the output formatting method for dis-
playing dates chosen in this case to be DD MMM YYYY. So a date listed on the web page as “1620 2-
May” will be stored as “1620093” and displayed as “2 MAY 1620” which is a more-readable standard
format. The value “1620093” will be used internally for functions such as before or after some other date
and the number of years between two dates, for example, to compute an age.

Figure 6. Data Frame Editor at object level.

 7

3.2.4 Managing Feast Dates

Feast dates in genealogical records are particularly interesting and challenging to convert to standard
dates. Nevertheless, the mechanisms to handle them in OntoES remain the same and feast dates can be
handled in a way similar to regular date designations. There are two types of feast dates used in genea-
logical records: (1) fixed feast dates and (2) moveable feast dates.

Fixed feast dates occur on the same month and day every year. Examples of fixed feast dates are
New Years Day (January 1st), Christmas (December 25th), All Saints Day (November 1st). There is no
major problem in extracting fixed feast dates and using a canonicalization function to determine the cor-
rect Julian date to be stored. Using a look up table along with knowledge about leap-year calculations, it
is straight forward to match the verbiage of a fixed date to its precise month and day. An English exam-
ple is this christening:

1581 last day of Sep [blank] daughter of Robert Symes

Here the “last day of Sep” is handled as a fixed feast date, and our method converts it to “1581272”.

Moveable feast dates, on the other hand, are not on the same day every year. Easter and Thanksgiv-
ing are examples of moveable dates. Many of the parish dates are given as moveable dates or expressed
in relationship to moveable dates. There are two types of moveable dates: those based on (1) a certain
day of the week and (2) those based on Easter. Here are examples of two moveable feast dates:

1723 Dnica Septuagesima
1736 Dom: Quasimodog:

“Septuagesima” is Latin for a Sunday nine weeks before Easter. “Quasimodog.”, an abbreviation for
“Quasimodogeniti,” is Latin for a Sunday one week after Easter. It is possible to compute these dates
based on the year. Using the year guide in Figure 7, the key for the year 1723 is ‘7’. Using that key and
the feast day guide in Figure 8, “Septuagesima 1723” can be decoded as “24 Jan 1723”. In a similar
manner, all feast days can be translated into month and day.

Year No.
1723 7
1724 26
1725 11
1726 31
1727 23
1728 7
1729 27
1730 19
1731 4
1732 23
1733 15
1734 35
1735 20

Figure 7. Sample year guide for decoding moveable feast days.

 8

 SEPTUAGE-

SIMA
SEXAGE-

SIMA
QUINQUAGE-

SIMA INVOCAVIT REMINI-
SCERE OCULI LAETARE JUDICA PALMARUM PASCHA

1 18 Jan 25 Jan 1 Feb 8 Feb 15 Feb 22 Feb 1 Mar 8 Mar 15 Mar 22 Mar
2 19 Jan 26 Jan 2 Feb 9 Feb 16 Feb 23 Feb 2 Mar 9 Mar 16 Mar 23 Mar
3 20 Jan 27 Jan 3 Feb 10 Feb 17 Feb 24 Feb 3 Mar 10 Mar 17 Mar 24 Mar
4 21 Jan 28 Jan 4 Feb 11 Feb 18 Feb 25 Feb 4 Mar 11 Mar 18 Mar 25 Mar
5 22 Jan 29 Jan 5 Feb 12 Feb 19 Feb 26 Feb 5 Mar 12 Mar 19 Mar 26 Mar
6 23 Jan 30 Jan 6 Feb 13 Feb 20 Feb 27 Feb 6 Mar 13 Mar 20 Mar 27 Mar
7 24 Jan 31 Jan 7 Feb 14 Feb 21 Feb 28 Feb 7 Mar 14 Mar 21 Mar 28 Mar
8 25 Jan 1 Feb 8 Feb 15 Feb 22 Feb 1 Mar 8 Mar 15 Mar 22 Mar 29 Mar

Figure 8. Sample feast day by year key.

Figure 9. OntoES Workbench ready to run the extraction.

For those feast dates based on a certain day of the week, like Thanksgiving on the fourth Thursday in

November or Mother’s Day on the second Sunday in May, there are seven possible dates as the calendar
rotates. They can be determined by a number assigned to every year. In general, the algorithm is to look
up the number for the year and then use that number assigned to each year to look up the correct month
and day. For those feast dates based on Easter, there are 36 possible sequences of dates with another 36
sequences added for the variation of leap year. We used the “Calendar of Feast Days” compiled by Henry
E. Christiansen as given in [Smi69] to build these 72 sequences.

Managing feast dates in this way means that feast dates can be extracted, converted to dates, and then
stored in Julian format by linking to the proper canonicalization programs.

3.3 Running OntoES
Figure 9 shows the OntoES workbench ready to process the Marriage ontology on the left with the

data from the South Petherton marriage web page on the right. After the ontology and the web page are
selected, the extraction is begun by pressing the green extraction button which is at the far right at the top
of the page.

3.4 Examples of the Ontological Results
Figure 10 shows the results of processing the input in Figure 1 with the extraction ontology developed

for marriage records. All the extracted information is correct. Two of the female names, however, are
identified as NameU because the first name could be either gender. (Interestingly, the assignment of gen-

 9

der for these will be handled in the rules discussed below where we will be able to reason that the gender
must be female since the male in the marriage is known.) Because there were no betrothal keywords, all
dates were determined to be marriage dates.

Applying a Latin version of the marriage extraction ontology to the data in Figure 2 yields the data in
Figure 11. The Latin language makes little difference in the extraction although the ‘Christinam’ given
name has a Latin female ending so is identified as female. The double date is handled by extracting the
second year.

BetDate MarDate NameM NameF NameU

 same day 1576 Nicholas Patch Christian Denman

 26 JAN 1605 Richard Patch Joan Lavor

 26 SEP 1613 John Elliott Joan Woodbery

 7 AUG 1615 Thomas Prime Maria Parry

 29 JAN 1616 William Woodbery Elizabeth Patch

 2 MAY 1620 William Hillerd Fortu: Patch

 17 SEP 1622 Nicholas Patch Elizabeth Owlsey

 22 JAN 1627 Richard Patch Mary White

 16 JAN 1630 Andrew Elliott Joan Patch

 12 FEB 1639 Andrew Elliott Joan Pitts

Figure 10. OntoES-extracted data from the source in Figure 1.

BetDate MarDate NameM NameF NameU

 eodem die 1577 Nicholaus Patch Christinam Denman

 26 JAN 1605 Richard Patch Joanna Lavor

 26 SEP 1613 Johannes Elliott Joanna Woodbery

 7 AUG 1615 Thoms Prime Maria Patch

 29 JAN 1616 Wilhelmus Woodbery Elizabetha Patch

 2 MAY 1620 Wilhelmus Hillerd Fortu: Patch

 17 SEP 1622 Nicholas Patch Elizabetha Owlsey

 22 JAN 1627 Richardus Patch Maria White

 16 JAN 1630 Andreas Elliott Joanna Patch

 12 FEB 1639 Andreas Elliott Joanna Pitts

Figure 11. OntoES-extracted data from the source in Figure 2.

3.4.4 OWL and RDF

We store the results OntoES extracts using the standard languages OWL (Ontology Web Language)
and RDF (Resource Description Framework). Doing so makes our results directly usable on the semantic
web. Additionally, it opens the door to being able to declare reasoning rules in semantic-web rule lan-
guages and to being able to query both the base data and the inferred data with semantic-web query lan-
guages. OntoES not only captures and canonicalizes data from unformatted records, but also automati-

 10

cally produces an OWL specification representing the ontological structure of the data and an RDF speci-
fication representing the data with respect to the OWL-specified schema.

These OWL and RDF specifications appear together in a single file. In this single file, name-space
prefixes identify whether an item is OWL metadata (“owl” prefixed) or RDF data (“rdf” prefixed) or
RDFS (RDF Schema declarations, “rdfs” prefixed). Further, when we add rules, which we explain be-
low, these specifications also appear in the same file as SWRL (Semantic Web Rule Language) items.
SWRL items are prefied with “swrl”.

The OWL/RDF/SWRL file starts with a header that defines the contents and the resources used.
Thereafter, the class and property declarations appear followed by the instance data. For our extraction
ontology in Figure 4, there is a class declaration for each object set, a data-type declaration for each lexi-
cal object set, and an object-property declaration for each relationship set.

As examples, the following class declarations are for three of the object sets in Figure 4. The NameU
object set is lexical and therefore also has the type declaration “&xsd;string”. The “&xsd;” entity prefix
here refers to an XML-Schema name space where the type “string” is defined. Note that the name for the
container for instance values for NameU is NameUValue. OntoES generates names for value containers
by creating an OWL datatype property mapping from the lexical object set to a string. The datatype
property name is formulated by appending “Value” to the end of the lexical object set name (NameU).

<owl:Class rdf:ID="MarriageRecord"/>
<owl:Class rdf:ID="Person"/>
<owl:Class rdf:ID="NameU"/>

<owl:DatatypeProperty rdf:ID="NameUValue">
 <rdfs:domain rdf:resource="#NameU"/>
 <rdfs:range rdf:resource="&xsd;string"/>
 <rdf:type rdf:resource="&owl;FunctionalProperty"/>
</owl:DatatypeProperty>

ObjectProperty declarations tie related object sets together. Thus, for example the relationship set in Fig-
ure 4 between Person and NameU has the following declarations, which define the Person-NameU object
property together with its inverse, NameU-Person.

<owl:ObjectProperty rdf:ID="Person-NameU">
 <rdfs:domain rdf:resource="#Person"/>
 <rdfs:range rdf:resource="#NameU"/>
 <owl:inverseOf>
 <owl:ObjectProperty rdf:ID="NameU-Person"/>
 </owl:inverseOf>
</owl:ObjectProperty>

Lexical data instances have both an object identifier and a lexical value. The following declaration makes
“Christian Denman” the string value for the instance and “NameU_0” the object identifier for Christian.
OntoES generates unique identifiers for object and value instances by appending a numbers to the names
of the object sets. Within each object set the numbers for each item are unique.

<NameU rdf:ID="NameU_0">
 <NameUValue rdf:datatype="&xsd;string">Christian Denman</NameUValue>
</NameU>

The following declarations tie instances together across relationship sets. Here, the first declaration ties
Christian Denman, who is identified by NameU_0 to Person_10. Thus, Person_10 is Christian Denman.
Subsequent declarations here connect Christian (Person_10) to MarriageRecord_7. Person_4, who is
Nicholas Patch, also connects to MarriageRecord_7 and is the other person in the marriage record.

 11

<Person rdf:ID="Person_10">
 <Person-NameU rdf:resource="#NameU_0" />
</Person>

<rdf:Description rdf:about="#MarriageRecord_7">
 <MarriageRecord-Person rdf:resource="#Person_4" />
 <MarriageRecord-Person rdf:resource="#Person_10" />
</rdf:Description>

<NameM rdf:ID="NameM_4">
 <NameMValue>Nicholas Patch</NameMValue>
</NameM>
<Person rdf:ID="Person_4">
 <Person-NameM rdf:resource="#NameM_4" />
</Person>

Note that OntoES only records facts it extracts. There is nothing here about husband or wife and nothing
about the unknown gender for Christian, which must be female. Inference rules, which we discuss next,
provide this additional information.

4 OWL Rules
Currently one of the best tools for producing and editing the rules is Protégé

[http://protege.stanford.edu] using Pellet [http://clarkparsia.com/pellet/]. As semantic-web reasoning
tools improve, we should be able to take advantage of them as well by maintaining our rules in the stan-
dard SWRL format.

4.1 Rule Declarations
The format of a SWRL rule is “body implies head.” SWRL rules are based on Datalog, which in turn

is based on Prolog, both longstanding logic languages. So that rules are both decidable and tractable, we
limit heads to be single atoms and bodies to be conjunctions of atoms. All variables are universally quan-
tified and variables that appear in the head must also appear in the body.

As a simple example, suppose we wish to identify the people whose names are extracted from the
Petherton marriage records as husbands. A person x has the role of husband in these marriage records if x
associates with a name y classified as a male name in the Person-Name relationship set. We write this
rule in SWRL as follows:

Person-NameM(?x,?y) -> Husband(?x)

In SWRL syntax the body of the rule is to the left of implication arrow and the head is to the right. A
question mark precedes variables. In the Person-NameM relationship set, variable “?x” matches with per-
son identifiers like Person_10 or Person_4 seen in previous examples. There will only be a value for the
variable “?y”, however, if “?y” is the identifier for a name in the NameM object set. As a result, “Hus-
band(?x)” is only true for substitutions for the variable “?x” that associate with a male name. In the un-
derlying XML, this rule appears as follows. Note that the rule head is defined first, followed by the rule
body.

 12

<swrl:Imp rdf:ID="Def-Husband">
 <swrl:head>
 <swrl:AtomList>
 <rdf:rest rdf:resource="&rdf;nil"/>
 <rdf:first>
 <swrl:ClassAtom>
 <swrl:argument1 rdf:resource="#x"/>
 <swrl:classPredicate rdf:resource="#Husband"/>
 </swrl:ClassAtom>
 </rdf:first>
 </swrl:AtomList>
 </swrl:head>
 <swrl:body>
 <swrl:AtomList>
 <rdf:rest rdf:resource="&rdf;nil"/>
 <rdf:first>
 <swrl:IndividualPropertyAtom>
 <swrl:propertyPredicate rdf:resource="#Person-NameM"/>
 <swrl:argument1 rdf:resource="#x"/>
 <swrl:argument2 rdf:resource="#y"/>
 </swrl:IndividualPropertyAtom>
 </rdf:first>
 </swrl:AtomList>
 </swrl:body>
 </swrl:Imp>

The following is a similar rule for the wife role.

Person-NameF(?x,?y) -> Wife(?x)

These husband and wife rules are correct but do not cover all the possibilities. When the gender for a
name is unknown, we can reason that the name is either male or female based on knowing the gender of
the spouse name. The following rules declare a person to be a husband if the spouse name is female and
vice versa.

Person-NameU(?x,?y) ∧ Person-NameF(?w,?v)
 ∧ Person-MarriageRecord(?x,?z)
 ∧ MarriageRecord-Person(?z,?w)
 -> Husband(?x)

Person-NameU(?x,?y) ∧ Person-NameM(?w,?v)
 ∧ Person-MarriageRecord(?x,?z)
 ∧ MarriageRecord-Person(?z,?w)
 -> Wife(?x)

Now, given husband and wife roles, we can reason that x is the husband of y if x is a husband, y is a

wife, and they are connected by the same marriage record. This rule depends on other rules. In general,
we can chain rules together to any depth. We can also make them recursive, so that they depend on them-
selves—an ideal way to compute AncestorOf.

Husband(?x) ∧ Wife(?y)
 ∧ MarriageRecord-Person(?z,?x) ∧ MarriageRecord-Person(?z,?y)
 -> HusbandOf(?x,?y)

 13

4.2 Rule Application
To query the extracted and inferred data, we write queries in SPARQL and SPARQL-DL, which are

semantic-web standards. SPARQL lets us query base facts, while SPARQL-DL lets us query inferred
facts as well.

We can, for example, query for marriage records between January of 1615 and December of 1625
with the following query. Prefixes (“:” and “xsd:” in our example) shorten the body of the query. The
prefix URI is substituted wherever the corresponding prefix appears. In this query we ask for four vari-
ables: Date, NameM, NameF, and NameU. The WHERE clause finds MarriageRecord-Event RDF triples
that are linked to Event-MarDate triples, which in turn link to MarDateValue triples; the filter clauses
eliminate triples whose linked MarDateValue is prior to January 1615 or subsequent to December 1625.
The optional clauses additionally look for linked NameM, NameF, and NameU values. Since each phrase
is optional, NameM, NameF, and NameU may be null in the query result.

PREFIX : <http://www.deg.byu.edu/ontology/Marriage#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT ?Date ?NameM ?NameF ?NameU
WHERE
{
 ?Mr :MarriageRecord-Event ?Ev .
 ?Ev :Event-MarDate ?Md .
 ?Md :MarDateValue ?Date . FILTER(xsd:integer(?Date) >= 1615001) .
 FILTER(xsd:integer(?Date) <= 1625365) .
 OPTIONAL { ?Mr :MarriageRecord-Person ?Husb .
 ?Husb :Person-NameM ?Nm .
 ?Nm :NameMValue ?NameM } .
 OPTIONAL { ?Mr :MarriageRecord-Person ?Wife .
 ?Wife :Person-NameF ?Nf .
 ?Nf :NameFValue ?NameF } .
 OPTIONAL { ?Mr :MarriageRecord-Person ?Unk .
 ?Unk :Person-NameU ?Nu .
 ?Nu :NameUValue ?NameU }
}
ORDER BY ?Date

Applying this query to the data extracted from the marriage records in Figure 1 yields the following re-
sults:

Query Results (4 answers):
Date | NameM | NameF | NameU
===
"1615219"†| "Thomas Prime"† | "Maria Parry"† | <<null>>
"1616029"†| "William Woodbery"†| "Elizabeth Patch"† | <<null>>
"1620123"†| "William Hillerd"† | <<null>> | "Fortu: Patch"†
"1622260"†| "Nicholas Patch"† | "Elizabeth Owsley"†| <<null>>

†The string “^^http://www.w3.org/2001/XMLSchema#string” appears here in the output.

Suppose we wish to find the husband of Christian Denman. This information is not directly extracted
by the extraction ontology when applied to the data in Figure 1. It can, however, be inferred from the ex-
tracted data. The rules in the previous section along with the base information are almost enough. With-
out looking, we do not know whether Christian is in the set of female names or male names or names with
unknown gender. Since in general this information is not known a priori, and also since we simply want
to deal with names independent of their classification, we can add the following nine simple rules.

 14

NameM(?x) -> Name(?x)
NameF(?x) -> Name(?x)
NameU(?x) -> Name(?x)

NameMValue(?x) -> NameValue(?x)
NameFValue(?x) -> NameValue(?x)
NameUValue(?x) -> NameValue(?x)

Person-NameM(?x,?y) -> Person-Name(?x,?y)
Person-NameF(?x,?y) -> Person-Name(?x,?y)
Person-NameU(?x,?y) -> Person-Name(?x,?y)

With these rules, along with the rules in the previous section, we can pose the following query:

PREFIX : <http://www.deg.byu.edu/ontology/Marriage#>

SELECT ?Husband
WHERE
{
 ?X :NameValue "Christian Denman" .
 ?Y :Person-Name ?X .
 ?W :HusbandOf ?Y .
 ?W :Person-Name ?V .
 ?V :NameValue ?Husband
}

This query produces the following results over the extracted data in our running example:

Query Results (1 answers):
Husband
===
"Nicholas Patch"^^http://www.w3.org/2001/XMLSchema#string

For the data in Figure 1 this is correct, but we also note that in significantly larger files, it is likely that
more than one Christian Denman may appear. In this case, of course, the query yields a list of all the
husbands married to a Christian Denman. More precise queries that would provide marriage-date ranges
and parish locations would be needed in this case. But this is exactly what having data in semantic-web
standard formats allows—the possibility to have all the data at one’s disposal and the possibility to use it
all to assist in reasoning over the base data.

5 Experimental Results and Implementation Status

5.1 Extraction Results
We created extraction ontologies for marriage records, birth records, and death records, and we ap-

plied them to data from three countries, England, the United States, and Denmark. The files we processed
contained 967 marriage records, 4505 birth/christening records, and 4801 death/burial records. Each re-
cord contained multiple entities (e.g., names, dates, occupations, ages). All together, the records con-
tained 28,659 entities. Of these entities, OntoES correctly extracted 27,831, for a recall ratio of 97.1%.
OntoES incorrectly extracted 291, yielding a precision ratio of 27,831/(27,831+291) = 99.0%.

Extraction accuracy was high for all data sets individually as well as collectively. If OntoES ex-
tracted an entity, it was usually extracted correctly. Recall results were mixed. For both English and
Danish records, recall was high, averaging above 95%, but for the American records, recall averaged only
about 88%.

 15

 MARRIAGES ENTITIES RECALL PERCENT ERRORS PRECISION
English 188 594 588 99.0% 8 98.7%
American 608 1824 1630 89.4% 34 98.0%
Danish 171 543 538 99.1% 10 98.2%
 BIRTHS
English 3153 9489 9394 99.0% 61 99.4%
American 675 2055 1809 88.0% 33 98.2%
Danish 677 2061 2042 99.1% 15 99.3%
 DEATHS
English 3458 8675 8589 99.0% 83 99.0%
American 510 1305 1148 88.0% 28 97.6%
Danish 833 2113 2093 99.1% 19 99.1%

Table 1. Extraction result detail.

For these American records, which were taken from Beverly, Massachusetts town records, there were

special recall problems. The town records were constructed from vital, church, and cemetery records so
that it is not unusual to have a great deal of duplicate information in parentheses or brackets like the fol-
lowing birth record:

WOODBURY, Charles Henry [Charles William, P. R. 4.], s. Henry [house-
wright. dup.j and Henrietta (Galloup), Dec. 4, 1845.

In this case “Charles William” was missed as an alternate name for the same person as “Charles Henry”
and was identified as another child, possibly a twin. A search for a surname for “Henry” incorrectly
found “[housewright”. The mother’s name “Henrietta (Galloup)” was extracted, but with parentheses.
Although accurate, the parentheses should be removed, but we have not written a method to postprocess
names to remove anomalies.

As an interesting aside, we report a few insights on our development of the extraction ontologies
themselves. For English and Danish data, the accuracy for our initial attempts at extraction of the first
few dozen records averaged 78%. When the lexicons and terms were expanded, the accuracy rose to
99%, as reported. We conclude that for many data sets, experts can successfully build and improve ex-
traction ontologies to attain near perfect accuracy. This is not the case for all genealogical records, how-
ever. Our initial attempts to extract from the American Beverly Town records averaged about 82%. Sub-
sequent recall, however, never exceeded 88%.

5.2 Implementation Status
The prototype system we have built is large (large for a proof-of-concept prototype) and comprehen-

sive (includes not only tools for information extraction and reasoning with rules, as explained here, but
also tools like TISP [TE09] for automatic table interpretation, FOCIH [TEL09] for form-based ontology
creation and information harvesting, TANGO [TEL+05] for generating ontologies from table collections,
and AskOntoES [Vic06] for processing end-user free-form queries). We call our larger prototype system
the “Ontology Workbench” because it lets us experiment with tools for semi-automatically generating
extraction ontologies and for applying extraction ontologies to annotate, organize, store, and query data in
web documents. Through our ontology workbench we are exploring ways to superimpose a web of
knowledge over the current web and thus enable a next-generation semantic web in which users can
search the web with keywords as they do now but can also directly ask and and get answers to arbitrary
free-form queries.

 16

With respect to the work reported here, we have implemented an ontology editor that lets us create
ontology structures (like the one in Figure 4), add instance recognizers for each object set in an ontology
structure (e.g., Figure 5), and specify canonicalization algorithms (e.g., Figure 6). Using the ontology
editor, we have created the extraction ontologies for this project as well as a few dozen others for differ-
ent projects. We have also implemented translators that convert much the results of applying extraction
ontologies to semantic-web languages, OWL and RDF. We use Protégé [http://protégé.stanford.edu]
which, in turn, uses Pellet [http://clarkparsia.com/pellet/] as our OWL reasoner. We load our OWL/RDF
data files into Protégé and use its SWRL interface to create our rules. We then query the rules and base
data with SPARQL-DL [SP07], a reasoner for OWL-DL (a decidable subset of OWL), which is based on
SPARQL, a query language for RDF data.

With respect to highly relevant work completed and underway in the ontology workbench, we men-
tion four features of interest: (1) annotation, (2) free-form queries, (3) results linked to original sources,
and (4) explanatory reasoning chains. When we extract information, we keep annotation information—
source documents and location information for each item extracted. Source documents include images,
where the location information is a bounding box for items extracted originally via OCR or manually.
Then, when we query extracted information, we intercept and rewrite the query so that it also picks up the
annotation information so that when it displays results they are all clickable items. When a user clicks on
a result, the system retrieves original documents, preprocesses them using the annotation information so
that the query-result information is highlighted and then displays the page, scrolled to the part of the
document where the information is highlighted. As an example, suppose a user types in the query:

Who is the husband of Christian Denman?

The highlighting on the query marks the items the system “understands” and is able to map to a populated
extraction ontology. The system generates and executes a SPARQL-DL query, which returns the results:

Nicholas Patch

When a user now clicks on the result, Nicholas Patch, the system displays the highlighted source

document in Figure 12 and the reasoning chain in Figure 13.

South Petherton Marriages
same day 1576 Nicholas Patch and Christian Denman
26 Jan 1605 Richard Patch and Joan Lavor
25-Sep 1613 John Elliott and Joan Woodbery
7-Aug 1615 Thomas Prime and Maria Parry
29-Jan 1616 William Woodbery and Elizabeth Patch
2-May 1620 William Hillerd and Fortu: Patch
17-Sep 1622 Nicholas Patch and Elizabeth Owsley
22-Jan 1627 Richard Patch and Mary White
15-Jan 1630 Andrew Elliott and Joan Patch
12-Feb 1639 Andrew Elliott and Joan Pitts

Figure 12. Highlighted document for sample query.

Currently, our Ontology Workbench implementation provides for annotations, including annotations for
images. It supports free-form queries but only over base facts with SPARQL (not SPARQL-DL). And it
yields results that are clickable and return documents with results highlighted. These implemented com-
ponents have not, however, been integrated into the workbench in such a way that they are accessible by
the genealogical prototype we are presenting here. Completing this integration is a near-term goal.

 17

“Nicholas Patch” because:
 NameValue(“Nicholas Patch”) and Name-NameValue(n1, “Nicholas Patch”)
 and Name(n1) is NameM(n1) and Person-NameM(p1, n1)
 NameValue(“Christian Denman”) and Name-NameValue(n2, “Christian Denman”)
 and Name(n2) is NameU(n2) and Person-NameU(p2, n2)
Husband(p1) because:
 Person-NameM(p1, n1)
Wife(p2) because:
 Person-NameU(p2, n2) and Person-MarriageRecord(p2, r1)
 and MarriageRecord-Person(r1, p1) and Person-NameM(p1, n1)
HusbandOf(p1, p2) because:
 Husband(p1) and Wife(p1) and MarriageRecord-Person(r1, p1)
 and MarriageRecord-Person(r1, p1)

Figure 13. Reasoning chain based on the rules in Section 4,

written in display form and with instance values inserted for variables.

No tool within the workbench displays reasoning chains like the one in Figure 11. Since we use tools
developed by others for rules and reasoning, and since these tools do not have mechanisms for storing,
retrieving, and displaying reasoning chains as we wish, we are not on the verge of being able to support
this functionality. As a future work item, we wish to bring the entire rule-specification interface and all
the processing of the rules inside the workbench. At that time, we will have full control of rules and rea-
soning and will be able to support explanations such as the one in Figure 13.

6 Conclusions
The applications of the ideas embodied in this prototype to the field of Family History are that a full

industrial-strength work-up of this prototype would:

• Speed up data indexing — The computer could do more of the work, changing the human inter-
face from that of indexer to that of editor of the indexing already completed by the computer.

• Make production of a full index easier — It is as easy to produce an index of all genealogical
entities as it is to index only a few. Residence, for example, is a helpful indicator to determine
which father is which when the father’s names are the same, but this information is rarely ex-
tracted. Automated indexing makes it easier to include all information, and additional ground in-
formation makes it easier to create rules to postulate facts of interest.

• Ground the index in original documents — The prototype retains trace-back information that
enables a link to the original primary record with a simple click. Explanations of any reasoning
chains used to derive inferred information are also possible.

• Provide for inferred facts — The addition of rules, most likely provided by experts as a one-
time effort for the various document types, can lead to a myriad of new facts and plausible facts
to be checked and confirmed by interested family history researchers.

• Simplify as well as augment record search — It is possible to deploy all the information, both
ground facts and inferred facts, as a semantic web application. This can make search for primary
genealogical records quick and easy and far more comprehensive than current techniques.

• Help link records and form family groups and ancestral lines — Inferred family group and
ancestral lines are possible. However, a missing ingredient, which we have not addressed, is to
be able to match the same person from one record to another. Names and other information vary
in many ways and the data itself is uncertain. Deploying the data as a semantic-web application
as we have described here should make this easier both because more information is readily
available for reasoning and because of the automated trace-back through explained reasoning
chains to original records.

 18

References
[ECJ+99] D.W. Embley, D.M. Campbell, Y.S. Jiang, S.W. Liddle, D.W. Lonsdale, Y.-K. Ng, and R.D.

Smith, Conceptual-model-based data extraction from multiple-record webpages. Data &
Knowledge Engineering, 31(3):227-251, November 1999.

[Emb80] D.W. Embley, Programming with data frames for everyday data items. Proceedings of the
1980 National Computer Conference, pages 301-305, Anaheim, California, May 1980.

[Emb04] D.W. Embley, Towards semantic understanding: An approach based on information extrac-

tion ontologies. In Proceedings of the Fifteenth Australasian Database Conference, pages 3-
12, Dunedin, New Zealand, January 2004.

[MNS02] A. Maedche, G. Neumann, and S. Staab, Bootstrapping an ontology-based information ex-
traction system. Intelligent Exploration of the Web, pages 345-359, Physica-Verlag GmbH,
Heidelberg, Germany, 2002.

 [Qua03] D. Quass, Perspective on research problems in family history from the LDS Family and
Church History Department, Family History Technology Workshop, Provo, Utah, March
2003. (http://www.fht.byu.edu/prev_workshops/workshop03/).

[Smi69] F. Smith, F. and A. Thomsen, Genealogial Guidebook & Atlas of Denmark. Bookcraft, Salt
Lake City, Utah, 1969.

[SP07] E. Sirin and B. Parsia, SPARQL-DL: SPARQL Query for OWL-DL, Proceedings of the 3rd

OWL Experiences and Directions Workshop, Innsbruck, Austria, June, 2007.

[TE09] C. Tao and D.W. Embley, Automatic Hidden-Web Table Interpretation, Conceptualization,

and Semantic Annotation, Data & Knowledge Engineering, 68(7):683-703, July 2009.

[TEL09] C. Tao, D.W. Embley, and S.W. Liddle, FOCIH: Form-based Ontology Creation and Infor-

mation Harvesting, Proceedings of the 28th International Conference on Conceptual Model-
ing, Gramado, Brazil, November, 2009, pages 346-359.

[TEL+05] Y.A. Tijerino, D.W. Embley, D.W. Lonsdale, Y. Ding, and G. Nagy, Toward Ontology Gen-

eration from Tables, World Wide Web: Internet and Web Information Systems, 8(3):261-285,
September, 2005.

[Vic06] M. Vickers, Ontology-based free-form query processing for the semantic web. Master’s the-
sis, Computer Science Department, Brigham Young University, Provo, Utah, June 2006.

