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Abstract 

Graphics Processing Units (GPUs) have been traditionally used to accelerate computation of 

computer graphics in applications such as video gaming and high-end 3D rendering.  However, 

recent research has examined using GPUs “in reverse” [1] for computer vision types of image 

processing.  This paper examines leveraging the parallel processing capabilities of GPUs to 

lower costs and increase the throughput of the millions of original record images being processed 

by FamilySearch. 

Digitization of original records is a large focus of family history service providers such as 

FamilySearch.  This digitization enables family history researchers to more easily access images 

of records without requiring physical access to archives or microfilm.  After digital images of 

records have been captured, FamilySearch applies several treatments to the raw images to 

produce both preservation and distribution quality images. 

Examples of these treatments include decoding from and encoding into different image formats, 

automatic skew correction, automatic document cropping, image sharpening and image scaling 

to produce thumbnail images.  The intent of these treatments is to enhance the presentation of the 

records in the images to the end user and to reduce file size for storage. 

FamilySearch currently processes millions of images annually in this manner through a 

collection of CPU based servers called the Digital Processing Center (DPC).  While the DPC 

consists of many CPU cores running in parallel across multiple servers, recent GPUs include 

comparable numbers of less powerful cores in a single card. 

If servers are constructed with both CPUs and GPUs and code is written to utilize the multitude 

of cores on the GPUs in a parallel manner, comparable throughput may be achieved in a smaller 

form factor with less overall cost and decreased processing time per image.  The result is 

increased scalability as FamilySearch continues to increase the number of images processed to 

make more records available more quickly to more people. 

1. Background on GPU Computing 

As the graphical capabilities of personal computers have increased, hardware manufacturers 

discovered that there were advantages to creating specialized hardware to perform mathematical 

operations commonly used in graphics rendering.  This eventually resulted in the advent of 

modern video cards with Graphics Processing Units (GPUs) as their core processing units. 

In contrast, Central Processing Units (CPUs) are general-purpose processors capable of running 

many different applications.  The architectures of CPUs and GPUs have evolved over time, but 

have always had fundamental differences.  CPUs have been optimized to provide a high degree 



of instruction level parallelism to maximize performance.  In addition, recent CPUs have 

provided multiple processing cores further allowing data to be processed in parallel.     

On the other hand, GPUs utilize a highly parallel architecture composed of many more but 

smaller processing elements capable of a high degree of data level parallelism.  GPUs are very 

much designed to be single instruction, multiple data (SIMD) machines.  This was originally for 

the purpose of accessing multiple pixels simultaneously to improve computer graphics 

performance. 

Modern GPU hardware is already fast and getting faster more quickly than CPU hardware as 

shown by the growth curves in       Figure 1 [2].   Despite higher processing capabilities, GPU 

computation is not well suited for certain types of tasks, however.  In order to realize 

performance gains from GPU computing, algorithms must be written in a matter that takes 

advantage of and executes on the GPU instead of the CPU.    

Despite the original intention of GPUs being 

used as graphics processors, advances in 

GPU architectures, programming tools and 

languages have given rise to the General 

Purpose GPU field [3].  In the past, 

specialized knowledge and skills were 

required to effectively write code designed 

for GPUs and applications were somewhat 

limited to the graphics domain.  However, 

programming tools have now been 

developed to use GPUs as general purpose 

parallel processors by writing code in high 

level programming languages in a way 

familiar to the majority of software 

developers [4]. 

As an example, one of the leading GPU hardware manufacturers, NVIDIA, has developed a 

programming language similar to the C programming language based on their Compute Unified 

Device Architecture (CUDA) [5].  Language bindings for CUDA have also been developed for 

many other popular programming languages, making writing code to utilize the computational 

power of GPUs much easier.  As evidence of the growing popularity of parallel programming on 

GPUs, parallel programming courses using CUDA are being taught at 381 universities 

throughout the world [6]. 

Improved programming languages and tools gave given rise to the emerging domain of High 

Performance Computing (HPC) with GPUs separate from the more traditional markets of high-

end computer gaming and 3D rendering .  New products such as the NVIDIA Tesla [7] are 

specifically designed solely for computation as evidenced by the complete lack of video output 

like a traditional video card.  These GPU computing processors are being used in large clusters 

for weather simulations, medical imaging, computational finance and many more 

computationally intensive industries.  NVIDIA also promotes using these cards to create 

“personal supercomputers”, capable of computation far exceeding normal workstations.  

      Figure 1 – GPU processing capabilities have grown much 

more quickly than for CPUs [2]. 



NVIDIA claims that the latest Tesla 20-series GPU computing processors can deliver equivalent 

performance to the latest quad-core CPUs at 1/20
th

 the power consumption and 1/10
th

 the cost [7] 

in smaller form factors.  These aspects make using GPUs for image processing at FamilySearch 

an attractive option to improve throughput and reduce ongoing costs. 

2. Background on FamilySearch Digital Image Processing 

FamilySearch is an organization that obtains a large amount of digital images of genealogical 

records from microfilm and digital capture of original records.  These images are given various 

processing treatments to enhance the presentation of the records in the images and reduce file 

size for storage. 

This image processing takes place in a collection of several CPU based servers called the Digital 

Processing Center (DPC).  FamilySearch currently processes millions of images annually with 

projections of at least a two-fold increase year over year for the next two years.  Future 

projections also include more color image processing (the vast majority is currently 8-bit 

grayscale) and larger images from digital cameras, further increasing processing requirements. 

FamilySearch currently accelerates image processing by leveraging two widely used libraries for 

a large portion of the image processing performed in the DPC.  These libraries are Intel’s 

Integrated Performance Primitives (IPP) [8] [9] and OpenCV [10] libraries.  In addition to these 

image processing libraries, several well used image decoder/encoder libraries are used to convert 

images from one format to another for various purposes. 

The majority of the time spent during processing each image occurs during relatively few library 

calls in the aforementioned libraries, so finding a way to replace these library calls with faster 

parallel GPU based alternatives would directly translate to improved overall image processing 

throughput in the DPC. 

3. Potential GPU Based Solutions 

Since the majority of time spent on image processing computation in the DPC takes place in 

library function calls to the IPP and OpenCV libraries, finding comparable GPU based libraries 

for these methods would be very advantageous.  This approach relieves developers from the 

optimization burden and learning curve of programming directly on the GPU in CUDA or 

similar languages. 

In direct response to Intel’s IPP library, NVIDIA has produced a NVIDIA Performance 

Primitives (NPP) library [11] [12].  The latest version (3.2.7) of this library has implemented 

several hundred functions that correspond to IPP library functions.  The intention for this library 

is to provide a GPU based solution that could be integrated easily with existing projects utilizing 

IPP, such as FamilySearch’s image processing library. 

NVIDIA has also recently partnered with Willow Garage, the maintainers of OpenCV, to include 

a GPU module that provides acceleration of some library functions on GPU hardware in the 

latest release of OpenCV (2.2) in December 2010.  This module is admittedly in early beta stage, 



but is suitable for this investigation.  Another potential candidate to accelerate OpenCV functions 

on the GPU is GPUCV [13]. 

The current architecture of FamilySearch’s image processing library is such that is should be 

possible to augment the current CPU based DPC cluster with GPU based servers that are capable 

of utilizing code that calls into libraries that execute on these GPUs.  If the GPU based cluster’s 

performance is favorable, it may be possible to eventually replace the current CPU based cluster 

with a GPU based one controlled by far fewer CPU based servers.  Assuming sufficient speedup 

is obtained, comparable throughput would be achieved in a smaller form factor with lower power 

consumption and total cost of ownership. 

4. Performance Testing Methodology 

To show the viability of GPU based image processing at FamilySearch, this paper will examine 

two image processing operations currently performed by the DPC, cropping and sharpening.  

Performance of the current CPU based library will be compared against a GPU based prototype 

to illustrate the performance gains as well as limitations of image processing on the GPU. 

All performance tests were executed on a system with Dual Quad Core Intel® Xeon® 2.83GHz 

E5440 CPUs (8 cores total), 16 GB RAM and a Debian Linux operating system.  A single Tesla 

C1060 Compute Processor (240 processing cores total) was connected via a PCI-Express x16 

Gen2 slot for all GPU computations. 

Three representative images of increasing size were chosen as samples for performance testing 

purposes.  The smallest image of 1726 x 1450 (2.5 megapixels) represents one of the smaller 

images processed by FamilySearch.  A larger 4808 x 3940 (18.9 megapixel) image represents a 

relatively typical size of image and the largest 8966 x 6132 (55.0 megapixel) image represents 

the current maximum size of images processed by FamilySearch. 

5. Cropping Operation Results 

Images are cropped by FamilySearch to provide a uniform border around records within images 

throughout a collection and to save storage space by discarding pixels that do not provide 

relevant information pertinent to the record.  This is also important when the images are indexed 

by FamilySearch Internet Indexing [14] so that a template can be applied to images that will 

more accurately place highlights on fields with data that should be indexed. 

The cropping operation consists of three main steps: 

1. Compute a threshold value 

2. Binarize the image based on the computed threshold 

3. Compute a bounding box that encloses all pixels determined as part of the document 

The operation to binarize the image based on a threshold value is well suited to parallelization on 

the GPU.  The NPP library provides the nppiThreshold and nppiCompare methods that are 

capable of performing this operation.  Computing a threshold value requires creating a histogram 

of the image, which can also be optimized by using NPP functions. 



Results comparing the time to compute a threshold and binarize the image are shown in Figure 2. 

Performing the threshold computation and binarization portions of the crop operation on each 

image using the current image processing library in use by FamilySearch closely follows a linear 

trajectory of about 12ms per megapixel in the image. 

Image Name Megapixels CPU GPU Speedup 

MARY0004D_Estate-Records-6456_06464-bl.tif 2.5 28.5 25.0 1.14 
SAM0203_00013.tif 18.9 213.0 30.0 7.10 

ITALRO02D_1-7-37_lsi.tif 55.0 640.5 40.0 16.01 

 

Figure 2 – Comparison of time to compute threshold and binarize images 

Using the NPP library methods to threshold the same images easily shows the effects of 

parallelization.  For the smallest image, the time to perform the binary thresholding on the GPU 

was only 14% faster than the CPU implementation.  As image size increases, however, the time 

to compute the threshold and binarize only increases slightly. The largest test image exhibited a 

16x speed increase when performed on the GPU over the CPU implementation. 

Not all portions of the crop operation were effectively parallelized on the GPU, however.  

Although NPP histogram functions were used to assist with computing a threshold value, the 

actual threshold calculation was still performed on the CPU.  This was not a significant amount 

of time, however, since this time was represented in results found in Figure 2.  The code to 

compute the bounding box also remained on the CPU and did not benefit from parallelization.  If 

the time for the entire crop operation is accounted for, the overall speedup was nonexistent or 

much smaller depending on image size.  See Figure 3 for a comparison of the overall time to 

crop images. 
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Image Name Megapixels CPU GPU Speedup 

MARY0004D_Estate-Records-6456_06464-bl.tif 2.5 73.3 75.3 0.97 

SAM0203_00013.tif 18.9 427.0 406.0 1.05 

ITALRO02D_1-7-37_lsi.tif 55.0 1285.7 1131.0 1.14 

 

Figure 3 – Comparison of time to crop images 

It is likely possible to convert the un-optimized portions of the crop operation to parallel GPU 

based implementations, but that task is reserved for future work.  The step to compute the 

bounding box is particularly attractive because it must iterate through the entire image and all 

indications are that this portion is primarily responsible for the majority of remaining time.  

Parallelizing this portion should result in vastly decreased execution time for the crop operation 

on the GPU. 

6. Sharpening Operation Results 

Images are sharpened by FamilySearch to improve the contrast of the written portion of the 

document against the paper it was written on to make it more readable.  The sharpen operation 

used by FamilySearch utilizes the common Unsharp Mask algorithm that can be decomposed 

into three steps: 

1. Perform a Gaussian Blur on the source image 

2. Take the difference of the blurred image from the original and multiply it by a specified 

amount 
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3. Add the image produced from the previous step and clamp any values back to the 

displayable range of [0,255] 

As with the crop operation, the NPP library provides suitable methods to increase performance 

through parallelization on the GPU.  The Gaussian Blur in Step 1 using NPP’s nppiFilter 

function was practically instantaneous on the GPU, not even registering a millisecond of 

execution time in performance measurements.  In contrast, the IPP ippiFilter operation took 

between 100-200 ms depending on the image size. 

A much larger portion of the computation time for a CPU based sharpening operation takes place 

in Steps 2 and 3 because the code must iterate through the entire images sequentially to subtract, 

multiply and add pixel values.  Unlike the portions of the crop operation that were left on the 

CPU, the NPP library also has functions to perform these operations. Figure 4 shows how 

performing sharpening on the GPU provides a dramatic speedup of about 7x over the CPU 

implementation for all image sizes. 

Image Name Megapixels CPU GPU Speedup 

MARY0004D_Estate-Records-6456_06464-bl.tif 2.5 195.3 27.7 7.06 

SAM0203_00013.tif 18.9 513.0 82.7 6.21 

ITALRO02D_1-7-37_lsi.tif 55.0 1399.7 181.7 7.70 

 

Figure 4 – Comparison of time to sharpen images 

Ironically, this exercise helped discover that the current CPU based implementation could likely 

be improved by utilizing corresponding IPP functions for Steps 2 & 3.  Doing so would provide a 

more fair comparison and probably improve performance on CPUs, though likely not as much as 

by utilizing the GPU. 
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7. Cropping and Sharpening Operations Combined Results 

While it is instructive to examine individual image processing operations individually, operations 

in the DPC are not performed in isolation.  Additional operations currently performed on each 

image include automatic skew correction, image scaling to produce thumbnail images and 

encoding/decoding in different image formats. 

To begin to show what performance gains an entire DPC operational plan may have through 

parallelization on the GPU, the work on cropping and sharpening operations was combined 

without returning the image to the CPU between operations.  Figure 5 shows a comparison of 

executing these two operations on each test image. 

Image Name Megapixels CPU GPU Speedup 

MARY0004D_Estate-Records-6456_06464-bl.tif 2.5 229.7 86.7 2.65 

SAM0203_00013.tif 18.9 929.7 513.0 1.81 

ITALRO02D_1-7-37_lsi.tif 55.0 2769.3 1460.0 1.90 

 

Figure 5 – Comparison of time to crop and sharpen images, including GPU transfer time 

One item not previously discussed is that moving to a GPU based solution comes with additional 

costs in the form of transferring data to/from the GPU for computation.  The previous results 

have not considered this time when comparing performance of operations, but this comparison 

does include GPU transfer time to illustrate the total expected performance of a GPU based 

solution.  To maximize performance, as few transfers back and forth from the GPU as possible 

should be made. 
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Overall, the results of the cropping and sharpening operations in tandem provide roughly a 2x 

speed improvement on the GPU.  This is especially significant considering the relatively un-

optimized crop operation being a large part of the total time.  If GPU optimized versions of all 

DPC operations were written it is expected that the overall speed improvement would at least 

meet and likely exceed the 2.5x speedup found by Lee et al. [15] when comparing various 

algorithms on CPUs and GPUs in a similar manner as done in this paper. 

8. Conclusions and Future Work 

This paper has shown that there is a significant increase in performance by parallelizing image 

processing operations for execution on GPUs.  There also appears to be great potential in a GPU 

based approach to image processing at FamilySearch, especially if GPU performance continues 

to improve more quickly over time than CPU performance and the libraries, languages and tools 

for GPU computing continue to get better. 

However, performance increases are highly dependent on the ability to take advantage of the 

data parallel nature of GPUs, but libraries such as NPP provide solutions that can be relatively 

easily applied to existing code bases such as the image processing library at FamilySearch 

without extensive knowledge of GPU programming. 

Another potential improvement to image processing at FamilySearch by using GPUs is that more 

computationally intensive operations may be used to improve image quality without sacrificing 

current levels of performance. 

In order to fully assess the viability of using GPUs for image processing at FamilySearch, the 

entire set of operations performed in the DPC should be implemented using GPU based libraries 

or languages to compare against the current CPU based library.  This includes implementing or 

utilizing libraries to perform image encoding/decoding.  One potential solution for JPEG-2000 

encoding/decoding is the Cuj2k library [16].   

To better validate actual throughput improvements, comparisons of CPU and GPU performance 

for image processing should also include an investigation in more production-like environments 

where thousands of images per hour are simultaneously processed across multiple servers 

executing multiple threads each.   

Finally, as FamilySearch increases the number of images processed it is believed that the 

performance gains shown in this paper will result in decreased processing times per image, 

increased throughput, smaller form factor and decreased total cost of ownership. 
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