
A Multilingual Personal Name Treebank to Assist

Genealogical Name Processing

 Patrick Schone and Stuart Davey
FamilySearch, 50 E North Temple, Salt Lake City, UT

Patrickjohn.Schone@ldschurch.org, DaveySE@ familysearch.org

ABSTRACT
In this paper, we illustrate the creation of a completely new

Treebank which has significant application to the

genealogical space and, to the best of our knowledge, has

never been described before. We document the creation of

a Personal Name Treebank (PNTB) which, though still a

work in progress, already contains over 150,000 name

structure classifications for people names derived from all

the cultures, time frames, and writing scripts that are

observed in our 800-million-name Common Pedigree at

new.familysearch.org. The Common Pedigree includes

names from various millennia, name from all countries of

the world, and names rendered not only in Latin, but also in

scripts such as Cyrillic and CJK. We describe the PNTB

and its components, and we give a number of examples

where this is particularly beneficial to genealogical search.

1 BACKGROUND

In name processing, it is customary for a name service to

throw out punctuation, tokenize personal names at white

space boundaries, and identify each name component as

either a “given name,” a “surname,” or some other kind of

name. For many types of name processing, this strategy

works reasonably well, especially for modern Anglo-

centric names.

This name-handling strategy is usually also followed in

genealogical name search, which is our particular interest.

Unfortunately, when the search for personal names extends

beyond the bounds of modern English origin, the

simplifications described above begin to break down and

result in search errors.

For example, in most of Scandinavia (and even still today

in Iceland), people were named according to a patronymic

system. Johan, the son of Erik, might accordingly be

named “Johan Eriksson.” Since there could be many

Johans whose fathers were each Erik, Scandinavians might

distinguish this Johan Eriksson by the farm he lived on,

such as “Johan Eriksson Holm.” Using the Anglo-centric

simplification for name handling, one might treat “Holm”

as the ‘surname.’ However, not all Scandinavian records

will refer to Johan by the name of his farm – they may only

represent him as “Johan Eriksson.” If his name is stored in

a genealogical search engine under the surname “Holm,” he

would not be found. Also, if the record indicates that his

surname is ‘Eriksson,’ there is a very real chance that his

father, Erik, has a surname other than “Eriksson.”

In Spanish, Portuguese, and other languages of Latin

origin, a given name can be represented as multiple words

such as “Maria de la Cruz”. It can be sufficient to treat this

name as two key components, “Maria” and “Cruz” and a

search engine would probably find the name. If a

genealogical search engine takes advantage of name

conflation/expansion, treating this name by its parts is less

beneficial. For example, it could be that the person also

went by “Maricruz.” “Maricruz” is neither a conflation of

the name “Maria” nor of “Cruz” but of the entire name

phrase. In addition to given name issues, these languages

frequently identify multiple surnames to indicate the

individual’s father’s family name, mother’s family name,

and/or the spouse’s family name. It is not unreasonable for

a Spanish name to be María de la Cruz Juana Gómez

Velásquez vda. de Gutiérrez.

These interesting naming phenomena exist in many

language and across time periods. Rather than coerce

names to fit an Anglo-centric model, it might make more

sense if a genealogical search engine could leverage a

personal name parse. The parsers job would be to

accurately describe all of the phrases and constructs of the

name, which could greatly facilitate search.

At the very end of the 1980s, the University of

Pennsylvania embarked on an effort to create full syntactic

parses of English sentences [1]. The collection of these

syntactic parses became known as a Treebank. Once the

first Treebank in English was created, it became clear that

these kinds of resources which could in turn be used for

creating or training rule-based and statistical parsers were

of great interest. Therefore, treebanks began to proliferate.

Now they exist in many languages and for many different

genre of texts.

To the best of our knowledge and from what we can find,

however, there has never been a treebank that was created

specifically for parsing personal names. Consequently, we

introduce our creation of a Personal Name Treebank

(PNTB). Our PNTB incorporates modern and historical

personal names across many language boundaries. These

names are drawn from the personal names in the LDS

Church’s “Common Pedigree” (available at

new.familysearch.org) which is quickly approach a billion

names. The common pedigree contains names from many

cultures of the world and some that date back for millennia,

in addition to names that are in non-Latin scripts

(particularly Cyrillic and CJK languages).

Though the PNTB is currently under development and the

annotation project is expect to continue for the next few

months, at the time of this paper, the PNTB already

contains over 150,000 name structure classifications. We

plan to extend existing parsers using the PNTB for

application to genealogical name searching. We would

also like to get the PNTB into the hands of researchers

around the world. We therefore provide a description of

the creation, features, and attributes of the current instance

of the PNTB.

2 A BRIEF LOOK AT TREEBANKS

Wikipedia provides an appropriate definition of a treebank:

“A treebank or parsed corpus is a text corpus in which

each sentence has been parsed, i.e., annotated with

structure” [2]. Depending on their elementary school,

many children are often asked at an early age to do

“sentence diagramming,” which is effectively identifying

the parse structure of a sentence. A treebank is a large

collection of these diagrammed sentences. Since we will

be describing the parsing of names later on, it is prudent to

take a moment to describe at least some of the components

and vocabulary associated with the parsing process.

2.1. An Example of Sentence Parsing

Consider the sentence:

 “The brown fox jumped over the lazy dog.”

The words “the” in each case of this sentence are

determiners, and are typically marked as “DT.” The words

“brown,” and “lazy” are adjectives. These are typically

expressed in treebanks by the symbol “JJ.” The words

“fox” and “dog” are nouns, and are represented by “NN.”

“Jumped” is a past tense verb which may get marked as

“VBD,” and over is a preposition, or “IN”. The period at

the end is usually just tagged as “.”

If the sentence can be relabeled to include these tags:

The/DT brown/JJ fox/NN jumped/VBD over/IN the/DT

lazy/JJ dog/NN ./.

When these tags are applied to the sentence, we would say

that the sentence is tagged for part of speech.

A parse goes beyond this process and converts the sentence

into its nested or linked components. Parses that show

nesting are usually called “constituency parses” and those

that show linkage are “dependency parses.” For the

moment, we will consider our example sentence by its

constituency parse. The fox is brown and the dog is lazy,

and we would like to bind these facts together. Usually,

adjectives and determiners are brought together into noun

phrases, NP. In this case, we have the first noun phrase

[NP [DT The] [JJ brown] [NN fox]] and another [NP [DT

the] [JJ lazy] [NN dog]]. The preposition “over” usually

signals the existence of a prepositional phrase, PP, which

would be represented as

 [PP [IN over] [NP [DT the] [JJ lazy] [NN dog]]].

The word “jumped” signals the event of a verb phrase, VP,

which might be given as [VP [VBP jumped] [PP …]].

Lastly, we would combine the first NP with the VP and

produce a sentence, [S [NP …] [VP …] [. .]]. Once the

phrase has been packaged up to the sentence level, the

sentence is parsed according to its constituencies.

Constituency parses sometimes also indicate the head word

for each phrase. The head is the key ingredient of the

phrase. In the noun phrase [NP [DT The] [JJ brown] [NN

fox]], the head is “fox” and in the verb phrase, the head is

“jumped.” This suggests that “fox jumped” is skeletally

similar to the full sentence.

2.2. Constituencies or Dependencies

Our example shows that through a parser, one can take a

larger sentence and prove that, at heart, it has a fairly

simple structure. The sentence we just saw rolls up to

have the same structure as the extremely basic sentence,

“John reads.” -- that is [S NP VP .]

An appeal of treebanks is that they are built on broad

ranges of sentences (including incomplete sentences), so

they can be used for helping to derive the meaning of even

the most complex sentences. A number of people have

developed computational systems for ingesting treebanks

and creating automatic parsers (such as Charniak [3] and

Collins [4]). Through the use of these treebank-derived

parsers, very sophisticated machine systems can be created

which can ingest 1000s of sentences and can attempt to get

at the understanding of large collections of text.

A drawback of constituency parses such as those that were

shown is that they can be complicated and costly, and they

provide more information and detail than what is often

needed for understanding. Dependency parsers are simpler.

They merely link components such as “the” and “brown” to

the word that they depend on, “fox.” They also do not

requiring any particular ordering of words. However, a

constituency parse can be turned into a dependency parse

but the reciprocal is not usually true. The constituency

parse preserves order, which may be useful, and the phrases

themselves can be important.

3 FEATURES OF THE PNTB

We now describe the current ingredients of the PNTB. We

believe that phrasing and order is important. Therefore, we

have created the PNTB as a constituency parsed treebank.

This section includes definitions of the constructs for the

“personal name parts of speech” and genealogical parse

structure. To provide better clarity of how the definitions

apply to name parsing, we will illustrate the use of each of

these constructs by showing examples.

A warning is in order. Section 3 is appendix-like in nature

as it walks though each of the constructs for use in the

PNTB. These constructs will be referred to in subsequent

sections and have therefore been identified here. Yet for

readers who are primarily interested in the PNTB creation

process itself and of current PNTB statistics, they may

choose to review Section 3.1 for a key name parsing

example and then may proceed to Section 4.

3.1. Simple versus Complex Names

When linguistic treebanks are created, they almost always

bypass the internal structure of personal names. Current

parsers would treat names in terms of the parts of speech of

the constituent name parts. For example, the name “John

Smith” would usually be marked as a noun phrase (NP)

involving two tokens “John” and “Smith” which are proper

nouns (NNP). Its constituency parse would be represented

as [NP [NNP John] [NNP Smith]].

The PNTB can serve as an extension to existing parsers

when it comes to handling these personal names. For

genealogical purposes, we prefer to parse names in ways

that help to identify the genealogical syntax roles that the

name pieces provide.

Let us begin here to identify relevant parse structures that

would be desirable for genealogical handling of names. Let

us start with some initial definitions:

GN= “Given Name” (a name that is given to the individual)

GNP = Given Name Phrase

FN=“Family Name,” with the following subsets

 FNF = “Family Name of the Father”

 FNM = “Family Name of the Mother”

 FNS = “Family Name of the Spouse”

 FND = “Name derived from a family name”

SNP = “Surnominal Phrase”

Using these definitions alone, we can provide the more

useful genealogical parse for “John Smith” of

 [NAME [GNP [GN John]] [SNP [FN Smith]]],

or, if we know more information about the individual, the

parse could also be

[NAME [GNP [GN John]] [SNP [FNF Smith]]] .

An initial reaction to this parse might be “Have we handled

this name better through using this parse than through using

existing practices?” This concern may even be

strengthened by the fact that, in genealogical data, a full

personal name may actually be pre-delimited (though

possibly incorrectly) by a genealogical patron as “John

/Smith/” to make handling even easier.

 It would certainly be hard to contend in favor of a treebank

if all names were as easy as “John Smith” to parse. Indeed,

it is the case that names with “genealogical parts of speech”

“GN FN” are the most frequent – at least this is the case in

our huge genealogical repository.

Yet there are thousands of different name structures that

occur in the data. For example, we previously identified a

viable name, María de la Cruz Juana Gómez Velásquez

vda. de Gutiérrez. This name has more parts than we have

yet identified. The word “vda.,” means “viuda” or

“widow” and it constitutes a bound particle that suggests

that this woman is associated with a deceased spouse.

Suppose we provide the following definitions:

REL = Relational particle (a word that signifies a relation

with one of the other name parts), with subsets

 RELW = “Wife-indicating relational particle”

 RELS = “Son-indicating relational particle”

 RELD = “Daughter-indicating relation particle”

 RELM = “Mother-indicating relational particle”

 RELF = “Father-indicating relation particle”

 RELC = “Genderless child relation particle”

 RELV = “Servant relation particle”

RELP = Relational Phrase

The term “vda.” would have a genealogical part of speech

of RELW. Gutiérrez is the woman’s husband’s name, and

“de” is a preposition or “IN” (which we saw earlier), we

could form a relational phrase

 [RELP [RELW vda.] [PP [IN de] [FNS Gutiérrez]].

“Gómez” and “Velásquez” are family names passed to the

individual, respectively, from the father and the mother.

Lastly, though “Juana” is a simple GN, “María de la Cruz”

is an entire phrase. The name María is both a GN and is

clearly the head of the phrase. “Cruz” is a noun-name

(meaning “cross”), so it could be represented either as

another given name or as a proper noun. Altogether, a

parse for this name might be represented graphically by

something like the following figure:

Since there are many names that might that differ in

simplicity from the “John Smith” case, we will proceed to

identify such cases and define parsing constructs that will

allow us to incorporate such names into our PNTB.

3.2 Patronymic Names

We mentioned the example of “Johan Eriksson” before. In

that case, “Eriksson” was not a family name that was

passed from generation to generation. It was a patronymic,

a name associated with the father’s given name. In that

sense, one could mark the “-sson” suffix of the name with

RELS and “Erik” as some kind of given name. Since it is

not the individual’s given name but rather that of the father,

we will introduce the tags

 GNF = “Given name of the Father”

 GNM= “Given name of the Mother”

 GNS = “Given name of the Son”

 GND = “Given name of the Daughter”

 GNS = “Given name of the Spouse”

 GNV = “Given name of the Person Served”

Consequently, “Eriksson” could be turned into a RELP,

 [RELP [GNF Erik] [RELS –sson]].

However, many countries that had used patronymics began

to eliminate them in the mid-1800s. So if one sees the

personal name “Johan Eriksson” without having any

knowledge of the familial relations, it is difficult to know

whether the name is patronymic or if it has evolved into a

typical surname. Although it is our plan to eventually mine

the relationships from Common Pedigree (in addition to

merely considering the names) and determine from those

relationships if such names are indeed patronymic, we will

tag likely-patronymic names generically as

 PN = “Patronymic Name (of origin)” or

 PM = “Matronymic Name (of origin)”

and include them in a

 PNP = “Patronymic Phrase.”

These construct will also be used when it is unclear what

potion of the name is the father’s or mother’s name. With

these constructs, we should also be able to handle names

from other cultures such as “David ben Jesse” and “Pavel

Aleksandrovich.”

3.2.1. Patronyms but Exceptions

The reader may know that names that we saw in Section

3.1 like Gómez and Velásquez are themselves patronymic

in origin. However, it has been almost 500 years since

such names were regularly patronymic, so we will treat

these names as indicated before unless we obtain relational

verification from Common Pedigree which suggests

otherwise.

“Fitz” and “Mc” are also ancient particles indicating

patronymic relationships that have been out of use for at

least two centuries. So we will treat these as particles, as

described in Section 3.6, unless we have relational evidence

of them being bound.

3.3 Honorifics and Titles

People are commonly referred to by honorifics and titles.

In the names Dr. John /Smith/ and Mrs. Judy /Jones/, the

words “Dr.” and “Mrs.” are honorifics. Honorifics are not

permanent parts of the person’s name, but they provide a

notion of respect. We will convey honorifics by

 H = Generic or male honorific

 HF =Expressly female honorific.

It may seem unusual to specifically identify a female

honorific when we have not included gender in other tags.

However, there is value to doing this beyond preservation

of gender information. Consider the three names:

 Mrs. Judy Jones

 Mrs. John Jones

 Mrs. Pat Jones

In the first instance, the name “Judy Jones” is clearly

female and the “Mrs.” indicates that Judy Jones is married.

In the second instance, though, there probably is not a

woman John Jones, but rather, this “Mrs.” says that there is

a woman whose name is unknown and she is married to

John Jones. In the third case, “Pat” is a gender-neutral

name and it is not clear if “Pat Jones” is the woman or the

husband. By using “HF” as a tag, we can hedge bets.

There are other special honorifics that are actually

associated with a position of rule. Examples of this might

be “Queen,” “Prince,” and so forth. We will tag these with

 T = Title

and we will allow honorifics or titles to be included in

titular phrases, that

 TP = Titular Phrase.

Titular phrases can also include multiword phrases such as

“Her Royal Highness” or “His Majesty.”

3.4. Ordinals and Generationals

As we mention royalty, it is also advantageous to talk about

ordinals. Consider the name “King George III.” The “III”

indicates that there were probably two other kings named

George who existed before the specified one. We will

create an ordinal class,

 ORD, with subclasses

 ORDR: An ordinal expressed by Roman Numerals

 ORDG: Ordinal expressing generational differences

The string “III” associated with King George would be

tagged as ORDR.

Note, though, that there could be a person name “George

Smith III” -- the potential son of “George Smith Jr.”

Though “III” will be tagged as ORDR, we will tag “Jr.” as

an example of ORDG.

3.5 Locative/Toponymic Names

King George III may actually have been observed as “King

George III of England.” “England” is a toponymic name –

one that refers to a location associated with the individual.

We will refer to “England” by

 NNPL= Location

We will treat “of England” as a special kind of

prepositional phrase, and will refer to it as

 PPTP = Toponymic Prepositional Phrase.

Identifying the places associated with an individual is

difficult, and, as we have said before, we will eventually

need to appeal to the Common Pedigree relationships and

auxiliary information in order to help determine when a

phrase is toponymic versus when it is merely a surname.

For example, the phrase “Van Roosendaal,” which

translates to “Of Rose Valley,” is a locative phrase. Dutch,

German, and various other languages use these kinds of

name constructs. However, just like patronymics which

may have lost their original origins, names like “Van X”

may be perceived of as merely a surname. Therefore,

unless we know that the location being identified in a name

is making specific reference to a place associated with the

person, we will assume a name like “Van Roosendaal” is a

multi-part surname with a bounded component (see 3.6).

3.6 Bounded Name Components

It was mentioned originally that many name processing

algorithms break names at whitespace boundaries. This

can cause significant problems when genealogically

searching for people with multi-part names.

In Section 3.2, we talked about name pieces such as “Mc”

and “Fitz” which are particles that cannot stand on their

own but which are bound to another word. For example, if

a genealogical patron is interested in the name “Mc Coy,”

failing to associate “Mc” with “Coy” will devolve the

query into a search for “Coy.” Though this may still yield

reasonable results, a query for “John Fitz William,” will

probably be less successful because either the term “Fitz”

will be eliminated from the query altogether or it will be

treated as a search term and allow every “John Fitz

Something” to become a potential response.

Additionally, in Section 3.5, we talked about “Van

Roosendaal” and other names like “Van X” and “Von Y.”

These names have similar issues to “Mc Coy” and “Fitz

William,” as do name phrases like the Portuguese “Da

Costa” and the Spanish “De La Rosa.”

Another example of interest comes from a name like “Jill

St. John.” “St.,” which is an abbreviation for “Saint,”

should not be part of a name search without being attached

to “John.” It would be unacceptable for a query to return

either “Jill. St. Mark” or “Jill M. John.”

We will call a word piece bounded if it should not exist

without the name component to which it is attached. In the

cases of “Van Roosendaal” and “Da Costa,” we can bound

the pieces if we treated them initially as prepositional

phrases which are then wrapped in a larger phrase, such as

 [FNP [PP [IN Da] [NNP Costa]] and

 [FNP [PP [IN Van] [NNP Roosendaal]]].

We define FNP = Family Name Phrase, with subtypes of

 FNPF = Father’s Family Name Phrase

 FNPM = Mother’s Family Name Phrase

 FNPS = Spouse’s Family Name Phrase

These constructs accommodate the handling of some

bounded conditions. They do not allow us to tackle “Mc,”

“Fitz,” or “St.”. So we introduce two additional particles,

 PARTRB = Right-bound name particle

 PARTLB = Left-bound name particle

These allow us to bind a particle to a token to the right or to

the left. Thus, we would represent the surname “Fitz

William” as [FNP [PARTRB Fitz] [NNP William]]. For

consistency, if the name had appeared as “FitzWilliam” or

“Fitzwilliam”, we will represent these respectively as

 [FNP [PARTRB Fitz_] [NNP William]], and

 [FNP [PARTRB Fitz_] [NNP william]].

3.7 Alternations and Conjuncts

Earlier, we saw an example of a woman whose parents

names were Gómez and Velásquez. In some languages,

these names would not appear juxtaposed, but rather, they

would be combined with a conjunction such as

 “Gómez Y Velásquez”

where “Y” means “and.” Conjunctions also appear in

surnames such as “Natt och Dag” (“Night and Day”).

Conjunctions (and disjunctions) also show up in a number

of other genealogical names when the exact spellings of

names are unknown, or when names in non-Latin scripted

are transliterated. Three examples are “Jack or John

/Smith/,” “Jean (Jane) Purdie,” and “郭KWOK.”

In normal treebanks, “CC” already is a part of speech to

indicate a conjunction. We will use CC specifically for

“and” conditions, and we will use CCD for disjunctions

(“or” conditions). CC (or CCD) are usually used to conjoin

two phrases of the same type.

The parentheticals already indicate disjunction. Often

parentheses are represented as “-LRB-” and “-RRB-” (left

and right round brackets) to avoid confusion with the

parsing brackets. The parentheses (or LRB/RRB) are their

own parts of speech.

In the case of the transliteration, we will introduce the

EQUALS construct for showing equality assignment

between words.

Using these constructs, we can parse our five examples as:

 [SNP [SNP [FNF Gómez]] [CC Y] [SNP [FNF Velásquez]],

 [SNP [FNPF [NNP Natt] [CC och] [NNP Dag]]],

 [GNP [GN Jack] [CCD or] [GN John]] [SNP [FN Smith]],

 [GNP [GN Jean] [((] [GN Jane] [))]] [SNP [FN Purdie]],

 and [SNP [FNP [EQUALS [FN 郭] [FN KWOK]]].

3.8. Wildcards and Arbitrary Fields

Up to this point, we have been identifying relatively

common personal name constructs. There are a number of

additional name structures that occur frequently in

genealogical databases but which are not actual full names.

These fall into four categories:

[1] Initialisms, such as the “F.” of “John F. /Kennedy/;”

[2] Abbreviations, such as the “Ma.” in “Ma. /Lopes/;”

[3] Wild cards, such as the “…” in “Fr…d G. /Williams/;”

[4] “Arbitrary” names, such as “Baby” or “Anonymous” in

the phrases “Baby /Jones/” and “Anonymous /Smith/.”

We will give each of these a separate personal name part of

speech tag. The first several are kinds of abbreviation,

ABBR, and we subdivide them into

 ABBRI = Abbreviation as an initial,

 ABBRGN = An abbreviated given name,

 ABBRFN = An abbreviated family name, and

 ABBRWC = Abbreviation containing wild cards.

The fourth category can either fall into a relational class (as

seen in Section 3.1) or it behaves as a class unto itself. To

handle it, we introduce the constructs

 X = Place holder for an unknown name, and

 XP = Place holder phrase.

The five examples can be parsed as follows:

[NAME [GNP [GN John] [ABBRI F.]] [SNP [FNF Kennedy]]]],

 [NAME [GNP [ABBRGN Ma.]] [SNP [FN Lopes]]],

[NAME [GNP[ABBRWC Fr*d] [ABBRI F.]] [SNP [FNF Williams]],

 [NAME [RELP [RELC Baby]] [SNP [FN Jones]]], and

 [NAME [XP [X Anonymous]] [SNP [FN Jones]]].

3.9 Phrasal and Syllabic Names

As name processing extends to names from Asian cultures,

aboriginal languages, Native American tribes, and so forth,

it can be the case that an entire of string of names must be

treated as a single unit. For examples, the following are

names that contain multiword parts which must be treated

as whole units: “CHAE GI-YEONG,” “/甯/ 小 姐,”

“Crow Flies High,” and “Barbara Mesh ke ah ko quah.”

If a genealogical patron is interested in finding his relative

“Crow Flies High,” is would be unacceptable to return

another name containing a subset of this phrase. Perhaps

the only acceptable name variant that might be appropriate

would be to return a Native American word which

translates into “Crow Flies High.” If we use the usual parse

construct NNP to mean a proper noun, we can embed it

into a GNP to provide a parse for Crow Flies High:

 [NAME [GNP [NNP Crow] [NNP Flies] [NNP High]]].

We could conceivably repeat this process for each of the

phrasal names. But there is a distinction. “Crow Flies

High” is a semantic rendering of a Native American name,

and its pieces are proper nouns. However, the partial name

“Mesh ke ah ko quah” is a sequence of syllables which

have no meaning in English and may have no particular

meaning in isolation in their language of origin. Since this

part of the name is composed of a sequence of syllables, we

will represent each piece by the construct SYL. Therefore,

we can parse the name “Barbara Mesh ke ah ko quah” as,

[NAME [GNP

 [GNP [GN Barbara]]

 [GNP [SYL Mesh] [SYL ke] [SYL ah] [SYL ko] [SYL

quah]]].

The name “CHAE GI-YEONG” also contains syllabic

components, and “/甯/ 小 姐” are, too, depending on

where the name is used. However, since these names are

of CJK origin, rather than giving them a generic syllable

reference, we will label the pieces by CN:

 [NAME [SNP [CN CHAE]]

 [GNP [CN GI] [- -] [CN YEONG]]], and

 [NAME [SNP [CN甯]] [GNP [CN小] [CN姐]]].

3.10. Namesakes

Another potential place for observing multiple name pieces

which could be treated as a single unit are namesakes.

Personal names involving namesakes are “Benjamin

Franklin /Smith/,” “George Washington /Martinez/,” or

“Charles Jean Baptiste /Thiery/”. That is, these names

absorb the name of another famous individual. It is unclear

at this point whether namesakes need to be tracked, so we

include them just in case. There is evidence that such

names may behave differently when one considers that the

nickname “Biff” conflates with “Benjamin Franklin.”

Moreover, in some time frames, if the first name of an

individual is “Benjamin,” there is a significantly higher

than expected probability that the middle initial will be “F.”

We have been using the construct NAME up until this

point without actually definition. The NAME construct is

to a personal name what the “S” construct was for a

sentence – an encapsulation of an entire idea. For

namesakes, we will allow an inner phrase of NAME to be

embedded in a larger NAME unit. More concretely, we

will parse “Benjamin Franklin /Smith/ as if we were first

parsing “Benjamin Franklin” and then embedding it in a

larger unit:

[NAME [NAME [GN Benjamin] [FND Franklin]] [SNP

[FN [Smith]]].

3.11 Occupations

It is well understood that surnames like “Baker,” “Smith,”

and “Cooper” came from professions. Although the origin

of such names is interesting, we do not view a name’s

origin as a commonly-needed component in a genealogical

treebank.

However, there are names that are represented in the data

where an understanding of occupation is required in order

to render an adequate parse of the data. Consider the

following names:

 Dr. George Hodgson /Higgins/ (Physician)

 (Contractor Architect) Frederich Albert /Telschow/

 Hedwig /Dirksen/ Hausfrau

The phrases “Physician,” “Contractor Architect,” and

“Hausfrau” are all occupations. We create two tags to

accommodate these issues:

 OCC = Occupation (other than a title)

 OCCP = Occupational phrase.

This allows us to parse the occupational components of the

above names into, respectively,

[OCCP [-LRB- -LRB-] [OCC Physician] [-RRB -RRB-]],

[OCCP [-LRB- -LRB-]

 [OCC Contractor] [OCC Architect]

 [-RRB -RRB-]], and

[OCCP [OCC Hausfrau]].

3.12 Descriptions and Attributes

The last of the components that we have observed as being

required in name parsing have to do with descriptors and

attributes. The following names include descriptors:

 Alfred "The Great" King of /England/,

 Cloderic "The Parricide" King Of /Cologne/, and

 /Skjold/ King of Danes.

The descriptors here are “Great”, “Parricide,” and “Danes.”

Note that each of these words, if processed through a

normal part of speech tagger, would be given a different

part of speech. “Great” is an adjective, and as seen before,

would be given a part of speech, JJ. “Parricide” is a noun

and would be given NN. “Danes” is a proper noun and

would be called NNP. The “Danes” case is special since it

conveys information about the race and location of the

individual, and also, because it modifies the word “King”

whereas the other pieces modify the name.

We introduce two additional constructs for handling

attributes:

 ATTP = Attributive Phrase

 NNPD = Proper noun that is a demonym (such as

 English, Dane, French, Thane, etc.).

Using these new constructs, we can parse the descriptors

for the example names as

 [ATTP [“ “] [ADJP [DT The] [JJ Great]] [” ”]],

 [ATTP [“ “] [NP [DT The] [NN Parricide]] [” ”]],

 [PPTP [IN of] [NP [NNPD Danes]]].

We mentioned previously that translations of Native

American names could be represented as sequences of

NNPs embedded in a NAME. However, many of these

names themselves use descriptors. They also frequently

refer to animals, colors, and status. We will add some

discrimination to NNPs and JJs to account for these special

differences:

 NNPA = Noun or Proper Noun describing an animal

 JJC = Adjective describing a color (eg., black, red,…)

 JJST = Adjective describing status (eg., sitting).

These additional constructs allow us to parse description-

names such as

“/Black Bear/” = [NAME [GNP[JJC Black] [NNPA Bear]]]

“Sitting Bull” =[NAME [GNP[JJST Sitting] [NNPA Bull]]]

“George Big Deer” =

[NAME [GNP [GN George]][GNP [JJ Big] [NNPA Deer]]].

3.13 Generic Names?

We will create one more name construct. We do not know

whether this construct is superfluous or if it has value, but

we will define it in that event that it may turn out to be

valuable. We will add GNG as a construct to account for

generic nicknames such as “Buck,” “Buzz,” “Slim,” “Ace,”

and so forth. Regular nicknames, like “Pat” for “Patrick”

or “Patricia”; or “Johnny” for “Johnathan,” conflate with a

particular subset of names. Generic nicknames, though, are

not conflations for particular given names. Therefore, they

have different properties and perhaps behave differently.

3.14 Constructs for Non-names as Names

We have identified numerous constructs associated with

personal names. However, not every entry identified in a

genealogical database as a personal name is indeed a name,

and the same holds for name queries. Examples of non-

names in Common Pedigree are “26 en 1913” and “Baby

Boy.” For non-names or under-specified names, we use

both name and generic parsing constructs to tag the

constituents, and then wrap the full phrase in NONNAME.

4 THE PROCESS FOR DEVELOPING PNTB

As stated originally, the PNTB is a work in progress and is

being created in a three-stage process. These stages are:

Stage 1: Pilot Parsing Experiment,

Stage 2: Personal Name Part of Speech Tagging, and

Stage 3: Conversion of Tags to Full Parses.

At the time of this paper, Stage 1 is complete, and Stage 2

is nearing the final stages of completion, and we are still

early into Stage 3. We believe that for name parsing, Stage

2 is the most time-costly of the three stages, and this will be

explained later. We will describe the processes for each of

these stages and provide the status of each.

4.1 Pilot Parsing Experiment

In the first stage of PNTB creation, our goal was to identify

what constructs would be required for parsing names and

what issues would come up when creating a treebank. This

initial phase of PNTB creation we will refer to as the “pilot

parsing experiment” and we describe it briefly.

4.1.1. Pilot Parsing Name Selection

To get a clearer understand of PNTB creation issues, we

thought it might be prudent to start with parsing a 5K set of

personal names. We drew 10,000 Latin-script names from

a 10M-entry name matching corpus (see [5]) and used half

of these for creating the pilot parsed data set. The name

matching corpus from which these names were drawn

consists of names from Common Pedigree, from historical

record collections, and Wikipedia.

4.1.2. Three-class Name Categorization

Next, we applied an existing rule-based tagger to these

parses who sole responsibility was to mark each name

piece with “FNF,” “GN,” or “O” for Father’s Family

Name, Given Name, and Other. For specific examples:

Mary /Jones/ GN FNF

Samuel /Smith/ GN FNF

Maria del Sol Rodgrigues Martinez GN O GN GN FNF

Harry N /Crane GN GN FNF

Fredrik /Petterson/ GN FNF

The items that are marked in green are properly classified,

whereas those marked in red are incorrect.

We reviewed these 5K three-way classifications. We found

that when the personal name was pre-tagged with a patron

judgment indicating the surname(s), only 8.52% of the

automatic three-way tags were incorrect. When there was

no pre-identified surname, the three-way tags were 10.44%

in error.

4.1.3. From Categorization to Parse

As we moved in the pilot from name piece categorization to

a full parse, if the name categorization was labeled as

“correct,” we used the initial three-way tags to provide a

quick estimation of what the parses should look like. For

example, “Harry N /Crane/” which was tagged as GN GN

FNF would be marked as

[NAME [GNP [GN Harry] [GN N]] [SNP [FNF Crane]]].

Any entries whose categorizations were marked as

erroneous were then parsed by hand.

4.1.4. Lessons Learned from Pilot

One of the “lessons learned” from this pilot is that a vast

number of personal names fall into a small number of

classes. Hence, to create a comprehensive PNTB, it would

probably be beneficial to identify the different kinds of

phenomena that occur in names rather than just randomly

sampling data.

We also realized that a more comprehensive representation

of the individual name pieces would be in order. For

example, although it may be acceptable to merely treat the

“N” in Harry N /Crane/ as a “GN,” it might be better to

categorize it as an initial, “ABBRI.” Moreover, rather than

treating a given name piece as part of the “other” class, it

would be useful to categorize the name piece’s role.

We also discovered that generating parses from personal

name parts of speech is significantly less complex that the

process of generating linguistic parses from linguistic parts

of speech. However, a caveat moving forward would be

that as the name tagset becomes more complex, the

conversion from tags to parses will probably also become

more complex.

A last lesson was that not all parsing errors affect

genealogical search. If we drill down deeper into the

8.52% “errors,” we found that 2.02% were associated with

patronymics (which may or may not be in error as

explained in Section 3.2); 0.72% were associated with

multiple family names; 0.54% were associated with faulty

handling of name particles; and 0.10% were mishandled

honorifics. Depending on how a genealogical search

system works, these cumulative 3.38% errors may have

little bearing on search performance. The remaining 5.16%

errors, however, could contribute adversely to search.

4.2. From Name Strings to PNPOS

By leveraging the lessons learned from the pilot, we were

able to create the parsing constructs which we described in

Section 3 and we were able to opt for a different strategy

for creation of the whole PNTB. In particular, rather than

grabbing a random set of names, which more than likely

would fail to discover many of the interesting name

patterns, we would iteratively process large portions of data

and attempt to find interesting name phenomena.

Following this stage, we would tag personal names based

on the observed personal name parts of speech (PNPOS).

4.2.1. Finding Initial “Interesting” Names

To find numerous interesting name patterns, we desired to

create a rule-based Personal Name Part of Speech Tagger

which could try to identify the roles of each of the name

pieces of every personal name (and sometimes, it identifies

subpieces). Yet in order to create this rule-based system,

we would need example interesting seed names.

To find these seeds, we sampled every 100
th

 name of the

previously-mentioned 10M-entry name matching corpus.

We perused these by hand attempting to find as many types

of name constructs as we could do manually. We

considered the number of tokens in each name and, if it

looked as if the name of that word count and structure

would yield a novel parse, we stored the name.

4.2.2. Development of PNPOS tagging rules

Given these seed names, we created a rule-based system

that could correctly PNPOS tag each of the seeds. This

initial system contained over 300 rules. We also introduced

into the system some constructs that were not referred to in

Section 3 but which would hope to facilitate eventual

parsing (such as SS for Spanish-like Surname, and

NAMESAK for handling name sakes). The rule system

was provided with knowledge of various kinds of particles;

patronymic constructs; multilingual prepositions and

determiners; titles; honorifics; occupations; locations;

attributes; forms of the word “Maria”; and so forth.

We next applied this rule-based tagger to the entirety of the

10M name corpus. We reviewed the results of the parsing

system and identified hundreds of additional rules

necessary to add to the system. In fact, we coerced the

system to predict rules that it would have preferred to have

seen based on the word structure, and, when those rules

seemed appropriate, they were added to the next

instantiation of the tagger.

Afterward, we ran the system against the entirety of the

unique Common Pedigree names and mined the output

looking for novel rules that could be added to subsequent

system iterations. We iterated on this process five

additional times. We were careful to look not only at

responses that were in Latin script, but also, where

possible, at those that were non-Latin. Through this

iterative process, we have thus far created 3863 different

rules for parsing names.

4.2.3. Human Vetting of PNPOS

To begin assembling the final set of PNPOS tags, we

applied the updated rule-predicting system to the set of all

Common Pedigree names beginning with a letter between

A-D. This set consists of 30.1M unique personal names.

We will be repeating this process for the remainder of the

corpus before we leave the PNPOS-creation stage, but we

have not achieved this feat as of yet.

Before proceeding, we need to provide a definition. We

will say that two personal names are in the same PNPOS-

tagged name class if they both would be tagged with

exactly the same set of tags (or, in other words, if the same

PNPOS tagging rule applies accurately to both). Although

there are some classes consisting of millions of names and

others consisting of only thousands or hundreds, we wanted

(at least, initially) to get a good sampling of what kinds of

names correspond to the various kinds of name classes.

Therefore, we selected no more than 100 names beginning

with each of the letters A, B, C, and D for each name class

for presentation to a human annotator.

We also created a vetting tool where a human could look at

35 names at a time with their corresponding rule and could

mark each name’s tag set as either correct (“YES”),

incorrect (“NO”), probably correct/handle later (“Y-HL”),

or probably incorrect/handle later.

At the time of writing this paper, the human judge had

looked at 162,214 unique personal names. The human

marked the proposed PNPOS-tagged names as:

 145,830 Yes 4,453 Y-HL

 1,825 No 10,106 N-HL.

If we take these Yes and Y-HL votes as both “sufficiently

correct,” we have 150,283 personal names tagged for

PNPOS. These fall into 679 different PNPOS name

classes. (It should also be commented that not all “N-HLs”

are incorrect as they stand, but the human preferred that a

new rule be created to handle those names more exactly.)

4.3. From PNPOS to Full Parses

Although we are currently at the initial stages of full

parsing, we believe, based on the pilot experiment, that

many of the full parses will be readily derivable from the

PNPOS tags. Moreover, in the next section, we identify the

frequency with which rules fire and find that many of the

names have only one to four names which, after PNPOS

tagging, should be straightforward to convert into parses.

We will be using the same vetting tool to handle the parses

as we had used for the PNPOS tagging. I

5 OBSERVATIONS

In Section 4.2, we mentioned that over 150,000 names have

been tagged by a human with the first stages of parsing. It

was also mentioned that the 150K represented 679 different

name classes, and no more than 400 name examples were

used for any one name class. Yet, when we described the

pilot experiment in Section 4.1, it seemed that some name

classes should be voluminous and others should be sparsely

populated. The reader, therefore, may be interested in

getting an estimate of the set size of each name class.

Since the 150K were drawn from the set of names whose

first letter begins with A through D, we will show statistics

on that same set of 30.1M unique names here.

Table 1 shows the top 50 rules as described in Section 4.2

that were observed when applied to this name set and the

sizes of their name classes if all rules were correct.

Table 1: Top Rules Identified on A-D Data Set

Class

Size

Rule Class

Size

Rule

6678282 G1 /S1/ 84536 G1 /G2/

6394495 G1 S1 83781 I1 I2 S1

2882259 G1 G2 S1 81758 G1. /S1/

2840377 G1 G2 /S1/ 77781 G1. S1

 721987 G1 I1 /S1/ 77002 S1 S2

 713050 G1 I1 S1 76063 S1 /S2/

 439980 G1 /P1/ 74532 G1 pp1 SS1

 438620 G1 SS1 SS2 71556 G1 P1 /S1/

 429946 G1 P1 66658 G1 /p1S1bu/

 324059 G1 G2 /P1/ 66512 G1 p1S1bu

 321204 G1 G2 P1 66432 G1 SS1 S1

 282245 G1 S1 S2 65284 G1 /pp1 SS1/

 270885 G1 G2 G3 /S1/ 60549 G1 S1 SS1

 267066 G1 G2 G3 S1 58605 G1 pP1 S1

 265247 G1 U1 57853 G1 S1 CCD1 S2

 255650 G1 pp1 S1 57402 G1 /S1 S2/

 188258 G1 /pp1 S1/ 56625 G1 G2 S1 S2

 181463 G1 G2 SS1 SS2 54881 G1 G2 U1

 158554 G1 G2 54613 U1 S1

 152191 G1 S1 /S2/ 52394 G1 pp1 /S1/

 141981 G1 P1 S1 49739 G1 /P1 S1/

 138112 NO PATTERN 49084 G1 pp1 pd1 S1

 135861 G1 /SS1 SS2/ 48602 G1 I1 /P1/

 86653 G1 G2 pp1 S1 47956 G1 I1 P1

 86323 S1 46441 G1 /p1S1b/

 86037 I1 I2 /S1/ 46118 G1 p1S1b

The rules from Table 1 represent 26.42M (or 87.7%) of all

the names that occur in the A-D data set. Note that one of

these slots is “No Pattern” where no rules fired for the

particular names. This means that approximately 12.5% of

personal names do not fit these rules. Although 12.5%

seems like a small number, Common Pedigree is fast

approaching 1B names, which means that about 125M

personal names would not fall into the top 50 classes.

The remaining 12.5% fall into a long list of rule types.

Table 2 (see the next page) shows each successive set of 50

additional rules and the number of unique names that were

identified with each of those rules. It then shows the

cumulative percentage of names that would have been

parsed by the time all of those rules had been applied.

Table 2: Cumulative Number of Processed Names by Rule

Ordered 50-

Rule Sets

Number of

Names Handled

Cumulative

Percentage of

Names Handled

Rules 1-50 26,420,983 87.7%

Rules 51-100 1,325,206 92.2%

Rules 101-150 642,160 94.3%

Rules 151-200 347,753 95.5%

Rules 201-250 232,893 96.2%

Rules 251-300 173,128 96.8%

Rules 301-350 128,270 97.2%

Rules 351-400 97,249 97.6%

Rules 401-450 80,389 97.8%

Rules 451-500 68,415 98.1%

Note that even after 500 rules have been applied, there are

still about 2% of the personal names upon which no rule

fired, which would equate to 20M names from the full

Common Pedigree. This provides strong evidence of the

value of a Personal Name Treebank when it is applied to

the handling of genealogical search on a very temporally

and linguistically diverse corpus such as Common

Pedigree.

6 CONCLUSIONS AND FUTURE PLANS

As we look forward into the future, there is obviously a

continuing need on our part to grow the number of personal

name parts of speech to cover the remaining Common

Pedigree names (outside of those beginning with A-D) and

then wrap these in parse structure. We expect this process

to take several months.

Upon its completion, we will be performing two studies.

The first of these is to see how well existing, trainable,

constituency parses can learn the constructs of the PNTB.

This process may lead to additional refinements of the

PNTB.

Afterwards, we plan to see if these automatic parses can be

used as a filter for automatic name matching (see [5] for

extended details). Our hope is that, once a genealogical

search is performed, the search engine can parse the query

and the result set and ensure that each result has a name

syntax which is consistent with the kind of name that was

in the query.

Lastly, we will be seeking to make the PNTB releasable to

the world at large. It is our expectation that this PNTB will

be of tremendous value to the greater research community

for identifying how to process human names.

REFERENCES

[1] M. Marcus, B. Santorini, M. Marcinkiewicz,

“Building a large annotated corpus of English: the

Penn Treebank,” Computational Linguistics, 19(2),

1993.

[2] Wikipedia, “Treebank,” Definition from 01/24/2012.

[3] E. Charniak “A Maximum-Entropy-Inspired

Parser,” NAACL'00, pp. 132-139

[4] M. Collins, “Head-driven Statistical Models for

Natural Language Parsing”, PhD Thesis, 1999

[5] P.Schone, C. Cummings, S. Davey, M. Jones, B. Nay,

M. Ward, “Comprehensive Evaluation of Name

Matching Across Historic and Linguistic

Boundaries,” FHTW@RootsTech2012, to appear.

