
Effective Sharing of Family History Information
Scott Woodfield

Computer Science Dept.
Brigham Young University

801-489-3046
woodfiel@cs.byu.edu

ABSTRACT
Family history research is significantly enhanced when we
collaborate using automated communication. Unfortunately,
machine-to-machine communication can lead to unintended
information modification or information loss. We propose
the development of an exchange model that includes two
sections. One represents common family history information
whose organization and content are specified by an accepted
standards committee. The first section should be
comprehensive, but need not attempt to be all things to all
people. The second section would include less common
information and a conceptual model (or schema) to define
the organization and semantics of that information. We
briefly describe a powerful meta-model for defining such
conceptual models. With this structure we can reduce or
eliminate information loss when exchanging information
using computerized tools.

Keywords
Conceptual model, family history, information sharing

1. INTRODUCTION
Family history research is much more enjoyable and efficient
when done in collaboration with others. Collaboration
reduces redundant work, puts multiple eyes on a problem,
and provides emotional support when things are difficult.
Fifty years ago researchers used hand written letters or a
telephone to communicate. Twenty-five years ago, we
improved the speed of communication by using emails. Now
we can automatically exchange information.

There is a basic problem with current family history
communication software however. The information sent is
not always what the receiver actually receives. The primary
problem is a mismatch between the source’s conceptual
model and that of the receiver. For instance, if one program
allows a user to assign probabilities to the different birthdates
of a person, but the receiver’s program does not, then the
probability information will be lost.

We use the term conceptual model to mean a specification of
what information can be stored and how it is organized. We
use the term conceptual model rather than schema because it
has less of an implementation connotation. In fact, a

conceptual model does not specify a representation or
implementation. For instance, in a family history program, it
does not specify what kind of database to use. For
transferring information, it does not specify the underlying
format (e.g. XML[1]). A conceptual model only specifies
content and its organization. It should also specify valid and
invalid content. A conceptual model should be easy to read,
understand, and if necessary, modify.

The first problem we have to solve is to make sure all the
information in one model can be transferred to another
model. If that cannot be done, no amount of agreement on
representation will help.

The first problem is compounded by the lack of a widely
accepted exchange model that does not distort or lose
information. We need a single exchange model with an
agreed upon representation, for without one, we are forced to
create numerous exchange models. If there are n different
programs (e.g. PAF[2] and Family Tree Maker[3]) then we
would have to create up to !(!!!)

!
 different custom exchange

programs.

Even with a single exchange model, if it is not sufficiently
powerful, there can be problems.
The information sent from program A through the
intermediate model to program B may damage or lose the
information during two transformations -- first, when
converting from program A to the intermediate form, and
second, when converting from the intermediate form to
program B.

There is an even more subtle problem. Information send
from A to B may be corrupted or missing segments.
However, B does not recognize this fact and disseminates the
recently received information to many other associates.
Even if the transmission from B is correct, the information
sent is incorrect and none of the recipients is the wiser.

To easily create and extend conceptual models requires a
well-defined model of conceptual models, a meta-model.
Tools for creating and editing conceptual models are a
necessity. The meta-model should be formally defined.
From a formally defined meta-model we can automatically
generate implementations of a conceptual model. An

example of such a meta-model is UML[4]. A common
problem with any conceptual modeling tool, such as UML, is
that it is not powerful enough to represent some of the
concepts needed for a genealogical conceptual model. For
instance, while it can represent crisp logic, it cannot
represent fuzzy logic. It can only represent sets,
partially-ordered sets, totally-ordered sets, and lists
informally. There is no distinction between hard
constraints and soft constraints. It has no probabilistic
constraints.

Even with current modeling techniques, we miss things
that make conversion difficult. If a model does not
provide adequate support for modeling sources, it
makes it difficult to send or receive information from
one that does. We have similar problems with research
support such as the representation of personas and
scenarios. Even if we did, customizing or extending
existing models is significantly constrained or
impossible.

2. PRIOR SOLUTIONS
There have been many attempts to solve the
transmission problem. All try to create the one
common model that rules them all. Basically, the
common model has to be all things to all people, but it
usually falls short.

2.1 GEDCOM
The most frequently used exchange model is
GEDCOM[5]. It has many of the limitations
described above, such as poor support for sources,
inability to support formal conclusions using formal
logic, and the difficulty in representing structures other
than lists (e.g. partially-ordered lists).

2.2 The Union Model

Another solution is to try and create the total
union model. That is, we will try to create a model
that can represent anything stored in any family history
program. This presents a few problems. First, if any
model is extended, the union model might need
changing. Second, we almost always leave out some
obscure concept found in some program. Third, it is
difficult to agree on what is in the union. An example
of an attempt at a universal model can be found at
opengen.org. It is interesting that such efforts create
yet another conceptual model.

2.3 My Program Is Sufficient
A variation of the total union model is, ”my software
can represent anything anyone ever would want to
represent.” The Master Genealogist (TMG[6])
attempts to do this with its GenBridge[7] software.
While better than GEDCOM, it is proprietary and thus
controlled by Wholly Genes[8]. All information must
conform to the internal format of GenBridge. If it
can’t represent something (e.g. probabilistic
constraints), it can’t be transferred. Support and
requested improvements are done at the discretion of
Wholly Genes (they do try to be very helpful). It is a
windows only piece of software. Every transformation
from a different model (e.g. Family Tree Maker) to
GenBridge must be custom built. GenBridge is a good
solution but we can do better.

2.4 The Text Bucket
Another common solution is the “text bucket” solution.
That is, if information cannot be automatically
converted from one model to another, it is converted to
text and stored. There are three problems. First the
conversion is not always accurate. Second, the
information must be manually converted into any
destination format. This is fraught with errors and
bias. Third, it is difficult for machines to process text.

2.5 The General Model
Another solution is to create a general model that can
be specialized to represent information. An example
was the Gentech Genealogy Data Model[9]. As with
other solutions we are constrained by the power of the
underlying model. For instance, the description of the
data model states that “all genealogical data can be
broken down into a series of short, formal genealogical
statements” [10]. Is that true, and, are their
genealogical statements sufficient? For instance, hard
and soft constraints are difficult to represent in their
system. Another problem is the use of lists or
sequences to represent information. In many cases it
appears that the information is better represented as a
set or ordered-set. The Gentech model also has a flaw
in that it over constrains an implementation. It is a
design model rather than conceptual model. In
particular, it tends to “normalize” the organization of
the information. It also defines foreign keys and
primary keys, concepts not present in a conceptual
model. Thus, the target storage mechanism is a
relational database. An object-oriented database would
find it cumbersome to implement the Gentech model.

2.6 Specific Attempts at an Exchange Model
There are many attempts at creating a replacement for
GEDCOM. Some are mentioned above. A very good
starting point for exploring the various attempts are
Tamra Jone’s article giving an overview of GEDCOM
replacements [11]. The BetterGEDCOM project also
provides similar information.

2.7 The Test
All prior solutions have merit but few can guarantee
the goal of any conversion situation. For any piece of
information !! that satisfies some conceptual model
!!, then for any transformation !!!!!() from !! to
!!, and transformation !!!!!() from !! to !!, the
following expression should hold:

Equation	 1.	 	 !!!!!(!!!!!(!!))	 =	 !!.	

	
In other words, the conversion of information from one
model to another and back should not result in the loss
of any information.

3. A SOLUTION
First, there must be a powerful meta-model for
defining conceptual models. Second, there should be a
single common, but not necessarily complete,
reference model for genealogical information that all
agree on. Third, the information in any application
should allow for the storage of any information defined
by the common model, the recording of extension
model definitions, and the storage of information
defined by the extension models. Fourth, there should
be a universally accepted information exchange model

that supports both the common model and extensions.

3.1 The Meta-Model
A sufficiently powerful meta-model is required to
define suitable conceptual models. We have
developed an extended text-version of the Object
Relationship Model(ORM) found in Object-oriented
System Analysis[13]. We call it E-ORM. E-ORM
supports many of the qualities required of a meta-
model. It incorporates all of the concepts found in
UML such as relations, formal 1st-order constraints,
generalization-specialization, and aggregation. In
addition, it has been extended to include formal sets,
partially-ordered set, multi-sets, and lists. It also
allows for soft and hard constraints and allows
probabilistic constraints. Being text-based it is easy to
edit. Its syntax is formally defined, making it possible
to parse it and automatically generate data storage
implementations. Because the representation of
relations, generalizations, and aggregations appear as
sentence-like structures, it is easier to read. While
there are more extensions to be considered (e.g. fuzzy
logic), E-ORM is suitable to modeling family history
information. E-ORM will come in two forms, a
definition form to be used by experts and a readable
form to be used by normal users

As a comparison between UML, the definition version
of E-ORM, and the readable version of E-ORM, see
figures 1, 2, and 3.

The UML version of the model is readable with
training. Editors for UML are expensive. Automatic

	

	

 Figure 1. UML Version of Partial Family History Model

 Couple[SOFT 0:15] has Child[SOFT 1][PARITALLY-ORDERED];
 Child IS_A Person;

Figure 2. Extended ORM, Definition Version

 A Couple should have 0 to 15 Child, a Child should belong to 1 and only 1 Couple.
 The set of Child belonging to a Couple is partially ordered.
 A Child is a Person;

 Figure 3. Extended ORM, Readable Version

conversion of UML models to implementations is
difficult and tools are expensive. Working with the
definition version of E-ORM also requires training.
However, it can be created and edited with simple text
processing tools. There is also an alpha-version of a
parser that can be used to automatically generate
information structures such as dataset or XML
schemas. At this time there is no tool for converting
definition E-ORM models to or from readable E-ORM
models. Such tools have been developed for meta-
models such as Object Role Modeling[14] and should
be able to be created for E-ORM.

3.2 A Single Common Reference Model
To communicate efficiently, there should be a single
common reference model, !!. A reference model is a
conceptual model that all programs and exchange
programs implement. This guarantees that any
information stored in program A, whose organization
satisfies the reference model, can be transformed and
stored in another program B, whose organization also
satisfies the reference model. This does not require
that the reference model be implemented in the same
manner in both programs. Program A may organize
information according to individuals and families.
Program B may organize information more along the
lines of events and characteristics. It doesn’t matter.
If they both satisfy the common reference model then a
transform must exist that can transform information in
A to information in B.

The reference model need not, and probably cannot be,
a “union” model, also known as “everything including
the kitchen sink” model. Such a model isn’t really
possible. It should be more of an intersection model.
It should represent all information that can be stored in
any genealogy program. It may also store information
that is commonly found in other programs, but perhaps
not in all. For instance, not every family history
program supports the recording of LDS information.
However, most do. Thus, it might be wise to define
such capabilities for all. As will be seen later, it is not
critical that the reference model be complete.

To be widely, accepted the common reference model
should be created and controlled by a sufficiently
powerful standards committee. Preferably, the model
and supporting software should be open source. All
major players in family history software should be
represented. Though beyond the scope of this paper,

and not subject to a technical solution, the failure to
create such an organization is a leading cause of family
history communication difficulties.

3.3 Structure of Source and Destination
Models
To support the exchange algorithm of section 3.6 we
suggest that family history programs organize
information as follows. 1) The data store must allow
the storage of all information, !!, that satisfies the
common reference model, !!. 2) It should explicitly
store a conceptual model, !!", that defines all user-
defined extensions to the reference model. 3) The data
store must allow the storage of all information, !!",
that satisfies !!". 4) A conceptual model, !!", must
be explicitly stored. This model defines the structure
of all information received from external parties whose
structure is not defined by !! or !!". 5) A means
must be provided to store data, !!", that is received
from other parties that does not satisfy !! or !!" and
thus cannot be stored in !! or !!".

!! need not be explicitly stored. All of the sections
may be empty. If !!" is empty then !!" must be
empty. If !!" is empty then !!" must be empty. !!"
and !!" must be disjoint. It will make things easier if
!!" and !!" are stored using the syntax and structure
used to specify the exchange model extensions of the
next section. We recommend that !!" and !!" be
defined using meta-model as powerful as the one
described in section 3.1.

3.4 A Single Exchange Model
There must be a single exchange model with a single
implementation used by all parties. For every
transmission of information from a source to a
destination, there is an exchange packet X. It has three
components: !.!! ,!.!! ,!.!!. X.!! is all data that
satisfies !!. !.!! is a conceptual model that defines
the organization of all information that cannot be
represented by !!. !.!! should be expressed by the
meta-model used to define !!" and !!" !.!! is the
data that cannot be described by !! and thus cannot be
stored in !.!!. !.!! must be defined such that all of
!.!! can be organized according to !.!!.

 A well-defined interface for storing information in and
retrieving information from the exchange model
should be provided.

3.5 Required Transformations
To effectively exchange information the following
transforms are required. In the following equations, the
prime symbol (“’”) means the selected information
from a source, S, that is being transferred to a
destination, D.

1) !!.!!,!.!!(!.!!
!)

2) !!.!!",!.!!(!.!!"
!)

3) !!.!!",!.!! !.!!"
!

4) !!.!!",!.!!(!.!!"
!)

5) !!.!!",!.!!(!.!!"
!)

6) !!.!!,!.!!(!.!!)

 7) !!.!!,!.!!(!.!! ,!.!!" ,!.!!")

 8) !!.!!,!.!!"(!.!! ,!.!! ,!.!!")

 9) !!.!!,!.!!"(!.!! ,!.!! ,!.!!")

 10) !!.!!,!.!!(!.!! ,!.!! ,!.!!)

Transformations 1 through 5 convert the information in
the source to the representation defined by the
exchange model. Transform 1 converts all selected
data in the source that is defined by the common
conceptual model to the data representation of the
common conceptual model in the exchange model.
Transform 2 converts the representation of the
conceptual model for user-defined extensions in the
source to the representation of conceptual models for
extensions in exchange model. Only that part of the
user-defined model needed to define data selected from
the user-defined model (!.!!"

!) is included. If the
representation of conceptual models in the source is
the same as that used in the exchange model, then the
transformation is the identity function. Transform 3
does the same thing as transform 2, except it converts
the external extensions stored in the source.
Transforms 2 and 3 are greatly simplified if the
representation of conceptual models for !.!!" and
 !.!!"is the same as that used to represent !.!!.
Transform 4 converts the selected user-defined data in
the source and converts it to the format and
organization defined in !.!!. Transform 5 is
analogous to transform 4 except it works on the
externally-defined information.

Transformations 6 through 10 convert information
stored in the exchange model to information stored in
the destination. Transform 6 converts all of the data in
the exchange model conforming to the common
reference model to the format used to store data in
!.!!. Transform 7 creates a conceptual model, !.!! ,
representing all concepts in !.!! not found in !.!!,
!.!!", or !.!!". !.!! is a temporary model and not
stored. Transform 8 extracts the set of data from !.!!
that can be stored in !.!!". Similarly, transform 9
extracts the set of data from !.!! that can be stored in
!.!!". Transform 10 extracts the set of data from
!.!! that cannot be stored in !.!!, !.!!", or
!.!!". It is organized according to the model created
by transform 7. Transforms 6 through 10 are much
easier to create if the conceptual modeling
representation of the exchange model is the same as
that used by the destination.

3.6 The Exchange Algorithm
The exchange algorithm is performed by the following
sequence of actions.

1) Create	 an	 empty	 exchange	 packet	 X.	
2) !.!!! = !!!! ,!!!

(!!!
!)	

Convert	 the	 common	 information	 selected	 in	 the	
source	 to	 the	 format	 used	 to	 represent	 data	 in	
the	 exchange	 model	 and	 store	 it	 in	 the	 section	 of	
X	 used	 to	 store	 common	 information.	
3) !.!! = !!.!!",!.!!(!.!!"

!)	 +	
 !!.!!",!.!!(!.!!"

!)	
Convert	 subsets	 of	 models	 defined	 by !.!!"	 and	
 !.!!"	 to	 the	 format	 used	 to	 store	 the	 extension	
models	 in	 the	 exchange	 model.	 	 The	 smallest	
subset	 is	 chosen	 that	 totally	 defines	 the	 selected	
data	 to	 be	 sent.	 	 If	 the	 conceptual	 model	
representation	 is	 textual	 and	 the	 same	 in	 the	
source	 as	 in	 the	 exchange	 model	 this	 step	
becomes	 simple.	 	 Because	 !.!!" and	 !.!!"	 are	
assumed	 to	 be	 disjoint	 we	 need	 only	 concatenate	
!.!!"

! and	 !.!!"
! 	 and	 store	 them	 in	 !.!!.	 	 	

4) !.!! = !!.!!",!.!! !.!!"
! +	

 !!.!!",!.!! !.!!"
!

	 Convert	 the	 selected	 data	 from	 the	 user-‐
defined	 and	 externally-‐defined	 sections	 of	
the	 source	 data	 to	 the	 exchange	 data	 format	
and	 store	 it	 in	 the	 exchange	 packet.	 	 The	

exchange	 data	 format	 should	 satisfy	 the	
!.!!	 specification.	

5) Send	 the	 exchange	 packet	 X	 to	 the	 	
destination	 D.	

6) !.!! = !.!! + !!.!!,!.!!(!.!!)	
Convert	 the	 common	 data	 in	 the	 exchange	
packet	 to	 the	 format	 of	 the	 destination’s	
common	 data	 and	 add	 it	 to	 the	 destination’s	
common	 data.	

7) !.!!" = !.!!" + 	
!!.!!,!.!!"(!.!! ,!.!! ,!.!!")

Extract	 the	 data	 in	 !.!!	 that,	 according	 to	
!.!!",	 can	 be	 stored	 in	 !.!!"	 and	 add	 it	 to	
the	 destination’s	 user-‐defined	 data.	 	

8) !.!!" = !.!!" +
 !!.!!,!.!!(!.!! ,!.!!" ,!.!!")

Extract conceptual model constructs from
!.!! not found in the user-defined or
externally-defined models of the destination.
Add them to the externally-defined
conceptual model of the destination.

9) !.!!" = !.!!" +
!!.!!,!.!!"(!.!! ,!.!!")

Extract the data in !.!! that, according to
!.!!", can be stored in !.!!" and add it to
the destination’s externally-defined data.

4. CONSEQUENCES
The core of the solution to the information exchange
problem is to first send any selected information that
fits the common model. This, in some sense, is like
the old GEDCOM model. For any information in the
source that does not fit the common model, send it and
its corresponding conceptual model to the destination.
At the destination store all data from the source that
fits the common model in the common data section.
All other data that can be stored in user-defined section
is converted and stored there. The remaining data,
along with any needed conceptual modeling
components, is stored in the externally-defined section.

If done in this manner, we should be able to satisfy
equation 1 above. That is, if a source sends any
information to a destination and that in turn is sent
back to the source, nothing is lost. Another advantage
of this solution is that the organization and
representation of information in the source,
destination, and exchange packet may all be different
and it will still work. It is now possible for users or

others to extend the conceptual model of any program
and still be able to share information without loss.

5. FUTURE WORK
Much of what has been described does not exist. It
will probably not succeed unless involved parties
expend efforts to make it happen. Some committee
needs to be formed and tasked to create a solution.
There are some obvious first steps.

The most difficult step will be to algorithmically
determine how the !.!! model relates to !.!!" and
!.!!" models. It will also be difficult to convert
!.!! data to !.!!" and !.!!" data. Beyond using
the common reference model, we can reduce the
problem if sub-models are created and certified by
some recognized standards committee. For instance, a
“Civil War” sub-model could be created and used by
all who wish to do family history research for people
that existed during the Civil War. Such a model
would be stored in a user’s !!" model. Anyone using
the Civil War extensions can send their information to
anyone, even those who have not extended their
common model with the Civil War sub-model. In the
latter case the Civil War information will be stored in
the recipient’s !.!! portion of their data store. When
the information is in turn sent on to someone who does
use the Civil War sub-model, they will be able to
receive the information, without loss. It will appear as
if it came from the first party.

There are still problems converting subsets of !.!!
corresponding to user-defined or uncertified sub-
models appearing in !.!! . While semantics may be
the same, models may not. For instance, one model
may record a marriage date as being associated with a
couple. Another may store it as the date of a marriage
event. Determining which information is the same,
and which is not, is difficult. The problem is similar to
exchanging data between heterogeneous databases.
We hope to partially solve the problem using an
ontological approach and natural language processing.
With the limited family history domain, we believe
progress can be made.

The quality of the alpha version of E-ORM must be
improved until it becomes a 1.0 version of the
software. It would be nice to add fuzzy logic to the
model but that is a lower priority. It is also desirable to
create a program that can take the definition version of

E-ORM and convert it to the more readable form.
Such programs have been done before and should be
feasible. Some conversions will be difficult, such as
how to make probabilistic constraints understandable.
If we consider the readable version of E-ORM to be a
stylized version of English with a suitable grammar,
we should also be able to take a readable version and
convert it back into the definition version of E-ORM.

It is assumed that the transforms described in section
3.5 are manually created. It would be a lot easier to
create automatic and easily extensible transforms if we
could automatically generate XML and relational
database models from E-ORM. More work should be
done in this area.

Finally, it is assumed that the information in the
common model can be easily viewed and manipulated.
This is usually the selling point of any version of
family history software. However, the views are
manually crafted. It is more difficult to create
interfaces for user-defined information and especially
for externally-defined data, even if we have the
corresponding conceptual models. It would be
preferable to automatically generate interfaces from
model descriptions. It would also be helpful if, when
sending information from a source to a destination, we
could send GUI information for viewing the extended
data.

6. REFERENCES
[1] (2008, November) Extensible Markup
Language(XML) 1.0 (Fifth Edition) [Online].
Available: http://www.w3.org/TR/REC-xml/.
[2] (2009, October) Personal Ancestral File
[Online]. Available:
http://www.familysearch.org/eng/paf/.
[3] (2012, October) Family Tree Maker [Online].
Available: http://www.familytreemaker.com/.
[4] (2011, July) Unified Modeling Language
[Online]. Available: http://www.uml.org/.

[5] (1999, October) The GEDCOM Standard,
Draft Release 5.5.1 [Online]. Available:
http://www.phpgedview.net/ged551-5.pdf.
[6] (2011, December) The Master Genealogist,
Version 8 [Online]. Available:
http://www.whollygenes.com/Merchant2/merchan
t.mvc?screen=TMG.
[7] Genbridge [Online]. Available:
http://www.whollygenes.com/Merchant2/merchan
t.mvc?Screen=PROD&Product_Code=GENBRD
G-DL.
[8] Wholly Genes Software, 5144 Flowertuft
Court, Columbia, Maryland 21044 [Online].
Available:
http://www.whollygenes.com/.
[9] (2000, May) Genealogical Data Model Phase
1 [Online]. Available:
http://xml.coverpages.org/GENTECH-
DataModelV11.pdf
[10] (2000, May) Genealogical Data Model Phase
1, p. 12 [Online]. Available:
http://xml.coverpages.org/GENTECH-
DataModelV11.pdf
[11] (November, 2005) Jones, Tamera, GEDCOM
Alternatives [Online]. Available:
http://www.tamurajones.net/GEDCOMAlternativ
es.xhtml.
[12] Data Models, Build A Better GEDCOM
Project [Online] Available:
http://bettergedcom.wikispaces.com/Data+Models
[13] D. W. Embley, B. Kurtz, S. N. Woodfield,
Object-oriented Systems Analysis: A Model-
Driven Approach. New York: Yourdon Press,
1990.
[14] T. Halpin, Object Role Modeling [Online].
Available: http://www.orm.net/.

