
Populating Ontologies with Data
from Lists in Family History Books

Thomas L. Packer
Brigham Young University

Provo, Utah, USA
Email: tpacker@byu.net

David W. Embley
Brigham Young University

Provo, Utah, USA
Email: embley@cs.byu.edu

Abstract—A flexible, accurate, and cost-effective method of
automatically extracting facts from lists in OCRed documents
and inserting them into an ontology would help make those facts
machine searchable, queryable, and linkable and expose their
rich ontological interrelationships. To work well, such a process
must be adaptable to variations in list format, tolerant of OCR
errors, and careful in its selection of human guidance. We propose
a wrapper-induction solution for information extraction that is
specialized for lists in OCRed documents. In this approach, we
induce a regular-expression grammar that can infer list structure
and field labels from OCR text. We decrease the cost and improve
the accuracy of this induction process using semi-supervised
machine learning and active learning, allowing induction of a
wrapper from a single hand-labeled instance per field per list. To
further reduce cost, we use the wrappers learned from the semi-
supervised process to bootstrap an automatic (self-supervised)
wrapper induction process for additional lists in the same domain.
In both induction scenarios, we automatically map labeled text
to a rich variety of ontologically structured facts. We evaluate
our implementation in terms of annotation cost and extraction
quality for lists in family history books.

I. INTRODUCTION

Family history books and other machine-printed documents
present much of their valuable content in data-rich lists. The
50,000+ family history books held by FamilySearch.org are
full of lists containing hundreds of millions of fact assertions
about people, places, and events. Figure 1 shows examples
of lists found on Page 154 of The Ely Ancestry [2]. These
lists make many assertions about family relationships and life
events. Our goal is to develop a means to extract the diverse
kinds of facts from lists in OCRed documents that is robust to
OCR errors and relies on as little human effort as possible.

To be most useful to downstream search, query, and data-
linking applications, the knowledge extracted from text must
be expressive and well structured. Ontologies are machine-
readable, mathematically specified conceptualizations of a
collection of facts. They are expressive enough to provide a
framework for storing more of the kinds of assertions found
in lists than the typical output of named entity recognition and
most other information extraction work. If we could populate
user-specified ontologies with predicates representing the facts
in OCRed lists, this more expressive and versatile information
could better contribute to a number of applications in his-
torical research, database querying, record linkage, automatic
construction of family trees, and question answering.

In this paper we propose ListReader, a robust, general, and
cost-effective solution to the challenge of extracting diverse

Fig. 1. Lists in The Ely Ancestry, Page 154

types of facts from lists in OCRed documents. ListReader
populates a user-defined ontology with assertions found and
labeled automatically. A ListReader user constructs an ontol-
ogy for a list by building a data-entry form in a custom web
interface and fills in the form with the information from the
first record of a list. ListReader induces a regular-expression
wrapper and automatically generalizes it to extract asserted
information from the remaining records of the list. Only when
ListReader encounters a new field in a later record must it
ask the user to update the form to accommodate the new field
and insert the field value to provide additional training data.
This is the minimum amount of training data conceivable as
the user begins to train ListReader to recognize information
in a new domain and document type. After ListReader has
begun inducing grammars and extracting information from a
document, it can switch into a self-supervised mode in which it
uses its store of knowledge to effectively label its own training
data for other lists, potentially removing the human user from
the process.

Other information extraction papers target lists [8], [9],
[11], but very few target OCRed lists. Those that target non-
OCRed lists target HTML lists and generally rely on consistent
landmarks (e.g. HTML tags) that are not available in OCR
text. Furthermore, and perhaps more importantly relative to
our work, they do not target the diverse semantic distinctions
in the rich ontological structures that we do. Most information-



extraction work targeting OCRed lists is specific to certain kind
of lists. Belaı̈d [3] [4] and Besagni, et al. [5] [6] extract records
and fields from lists of citations, but rely primarily on hand-
crafted knowledge that is specific to bibliographies. A paper
by Adelberg [1] and one by Heidorn and Wei [10] target lists
in OCRed documents in a general sense. They, however, use
supervised wrapper induction that we believe will not scale
as well as our semi-supervised or self-supervised approaches
when encountering the “long tail” of list formats. Also, the
extracted information is limited in ontological expressiveness.

In this paper, we make the following contributions. (1)
We establish a formal correspondence among list wrappers,
ontologies, data-entry forms, and in-line annotated text. This
correspondence provides the data flow for a processes in which
a user can easily annotate OCRed text as training data for
wrapper induction and create a new ontology schema. It also
enables even simple induced wrappers that produce in-line
or sequentially labeled text to extract rich facts from lists
and insert them into an expressive ontological structure (Sec-
tion II-A). This effectively reduces the ontology population
problem to a sequential labeling problem. (2) We demonstrate
that it is possible to perform wrapper induction for a list
using only one human-provided label per field (Section II-B).
(3) We show one way that automatic labeling can replace a
human labeler in providing input to wrapper induction by using
wrappers previously induced from other lists (Section II-C).
(4) We evaluate extraction accuracy and show that ListReader
outperforms a general, state-of-the-art information extraction
system with high statistical significance (Section III). (5) We
conclude that we can benefit from the ListReader line of
research and identify opportunities for future research into
cheaply inducing accurate wrappers for general OCRed lists
(Section IV).

II. LIST WRAPPER INDUCTION

A. ListReader Overview

ListReader populates an ontology from lists in OCRed text
as follows:

First, a user selects an OCRed image (a two-layer PDF
file in our implementation) that contains a list (e.g. Figure 1).
Initially, when ListReader has no information in its knowledge
repository allowing it to find and process lists on its own, a user
spots a list and, with ListReader’s form interface, constructs
a form for the data fields in the first record of the list and
fills in the form with text from its first record. For example,
supposing the spotted list is the second child list in Figure 1,
the user would construct the form in Figure 2 and fill it in by
clicking on the words in the PDF in the order specified by the
form.

Second, from the empty form, ListReader creates the
schema of an ontology (e.g. Figure 3).

Third, to induce a wrapper, ListReader uses the information
obtained from the filled-in form to label the fields within the
OCRed text as training data. Figure 4 shows the labeled text for
our example. ListReader labels text strings within the OCRed
document with path expressions. Each expression identifies
a path in the ontology hyper-graph from the root node to
a leaf (text) node which ListReader can use to map labeled

Fig. 2. Filled in Form for Samuel Holden Parsons Record

Fig. 3. List Ontology for Samuel Holden Parsons List

text to object and relationship predicates. The in-line labeled
text provides enough information for ListReader to induce an
information extraction wrapper for the whole list as we explain
in Section II-B.

Fourth, the induced wrapper labels the remaining records
in the list with labels like those provided in its training data.

Finally, ListReader saves the induced wrapper and ontology
in its knowledge repository and uses it to find and process
similar lists in other OCRed document images. In this case,
the user needs neither to create a form to generate the ontology
nor to fill in the form to label any of the fields of any of the
records. We explain how this works in Section II-C.

<ChildNumber>1</ChildNumber>. <Name>Samuel</Name>
<Name>Holden</Name> <Name>Parsons</Name>
, b. <BirthDate.Year>1772</BirthDate.Year>
, d. <DeathDate.Year>1870</DeathDate.Year>
, m. <FirstName>Elizabeth</FirstName>
<Surname>Sullivan</Surname>.

Fig. 4. Labeled Samuel Holden Parsons Record

The metaphor of form fill-in for obtaining information is
familiar to most users as is form creation from the set of prim-
itives we provide. These form primitives, along with nesting,
provide for a rich set of ontological structures. Each named
form primitive corresponds to an object set, and each nesting



Final Regex
Label Initial Regex RecordType1 RecordType2
RecordDelimiter (\n) (\n) (\n)
ChildNumber (\d) (\d) (\d)
FieldDelimiter (\.\s) (\.\s) (\.\s)
Name (\w{6,6}) (\w{5,9}) (\w{5,9})
FieldDelimiter (\s)
Name (\w{3,8})
FieldDelimiter (,\sb\.\s) (,\sb\.\s) (,\s[bh]\.\s)
BirthDate.Year (\d{4,4}) (\d{4,4}) ([i0-9]{4,4})
FieldDelimiter ([.,]\sd\.\s)
DeathDate.Year (\d{4,4})
FieldDelimiter (\.) (\.) (\.)
RecordDelimiter (\n) (\n) (\n)

Fig. 5. Regex Induction for First Child List in Fig. 1

corresponds either to a relationship set or to a role specializa-
tion. ListReader can extract rich data with five types of expres-
siveness: (1) textual vs. abstract entities (e.g. Name(“Elias”)
vs. Person(p1)), (2) n-ary relationships among two or more
entities instead of strictly unary and binary relationships (e.g.
Husband-married-Wife-in-Year(p1, p2, “1771”)), (3) ontology
hyper-graphs with arbitrary path lengths from the root instead
of just unit length as in named entity recognition or data
slot filling (e.g. <Person.Spouse.SpouseName.Surname>), (4)
functional and optional constraints on relationship sets (e.g. A
person has one birth event vs. zero or more marriage events),
(5) generalization-specialization hierarchies, including, in par-
ticular, role designations (e.g. Child isa Person).

B. Semi-supervised Wrapper Induction

In the semi-supervised wrapper induction setting,
ListReader begins learning from nothing more than the text
of an OCRed page image with the fields of the first record of
a list labeled. ListReader initializes a new wrapper to model
the text and labels of the first record using a sequence of
capture groups corresponding to the sequence of fields and
delimiters. Consider, for example, the following labeling of
the first record of the first child list in Figure 1:

<ChildNumber>1</ChildNumber>. <Name>Andrew</Name>,
b. <BirthDate.Year>1772</BirthDate.Year>

From this labeling, ListReader generates the initial regular
expression (regex) in Figure 5, a first level generalization of
the field delimiters and content.

ListReader generalizes the initial wrapper in four steps
to produce a set of regexes, one for each record type. First,
ListReader performs an A* graph search for each line of text
below the first record. This is a search over a hypothesis space
whose nodes are regexes and whose edges are edit operations
transforming one regex into another. The goal of the search is
the regex with the shortest edit distance from the initial regex
that completely matches the new unlabeled text line. Using
an admissible heuristic to estimate the remaining distance
to the goal from each intermediate regex, the A* search is
guaranteed to find our desired regex before any other regex
that completely matches the text. The heuristic we use is the
number of capture groups in the intermediate regex that do not
match any substring of the unlabeled text.

To generate one regex from another, ListReader applies one
of four operators to select capture group positions: insertion,

deletion, character class substitution, and length substitution.
The substitutions always result in a regex that will match a
larger class of text. For example, the character class operator
replaces each character in a delimiter with a predefined set
of common OCR error substitutions (e.g. it replaces “[.]”
with “[.,]”). ListReader assigns a field label of “Unknown”
to inserted capture groups, used below during active learning.

Second, ListReader scores and ranks the new regexes.
ListReader assigns a quality score to each regex which is
the product of similarity and match-frequency (all values are
between 0.0 and 1.0). Similarity is 1 minus the normalized edit
distance from the initial regex. (Values less than 0.0 are set to
0.0.) We compute edit distance by summing an empirically
determined cost value (between 1.0 and 2.0) assigned to
each operator. Match frequency is the number of candidate
records matched in unlabeled text divided by an empirically
determined maximum number of records that a single regex is
expected to match. (Values above 1.0 are set to 1.0.)

Third, ListReader determines whether it should query the
user. ListReader executes candidate regexes against the un-
labeled text in the order of their quality scores and removes
segments of text (records) that match. If ListReader encounters
a regex with an “Unknown” label while removing records, it
alerts the user by highlighting the text matched by the “Un-
known” capture group. The user may then modify the form,
which provides a new field label and updates the ontology, and
then copy the part of the highlighted text that constitutes the
field value into the new form field. ListReader then regenerates
that section of the matching regex.

Last, ListReader stores the induced wrapper in its knowl-
edge repository for use in self-supervised wrapper induction
(Section II-C). After inducing a wrapper and labeling the
records of a list, ListReader uses the labels to instantiate the
ontology for the list. For the labeled field values in a record,
ListReader creates objects and relationships corresponding to
each label’s path and properly links the field values within the
record according to the structure of the ontology.

C. Self-supervised Wrapper Induction

In the self-supervised setting, ListReader begins wrapper
induction with a completely unlabeled page and a non-empty
repository of induced wrappers. ListReader effectively labels
its own training data by applying the “best” of the stored
wrappers to the page. Here, “best” means the regex with
the highest quality score as computed against the new text,
drawing only from regexes containing no “Unknown” capture
groups. In this case, we recompute the match frequency and the
heuristic distance for each regex using the new text, adding the
latter to the actual edit distance from the original (fully labeled)
regex. ListReader then executes the semi-supervised wrapper
induction process (Section II-B) for each line of text above
and below the best matching record and saves the resulting
wrappers in its repository for immediate use.

III. EXPERIMENTAL EVALUATION

A main objective of developing ListReader is to find a
way to reduce cost (human labeling) and increase accuracy (F-
measure) of inducing wrappers for lists by taking advantage
of list structure. Since we can view part of ListReader as a



TABLE I. SEMI-SUPERVISED RESULTS

Accuracy Cost
P. R. F. # Labels / List

ListReader 95% 91% 93% 4.5
CRF 1st Rec. 86% 71% 78% 4.4
CRF Best Rec. 86% 70% 77% 4.7
CRF Best 2 87% 82% 84% 8.4
CRF Best 3 87% 86% 87% 11.0

TABLE II. SELF-SUPERVISED RESULTS

Accuracy Cost
P. R. F. # Labels / List

ListReader 91% 75% 82% 0.24
CRF 72% 68% 69% 0.66

machine-learned sequential labeler, we empirically compare it
to a highly regarded Conditional Random Field (CRF) statisti-
cal sequence labeler [12]. To make our labeling task learnable
by the CRF and to ensure a fair test, we tuned its hyper-
parameters and selected an appropriate set of word features.
As test data, we selected and isolated the text of 30 child lists
from throughout The Ely Ancestry [2] containing a total of
137 records and an average of 10 fields per list. We compute
F-measures for field labels over all word tokens not used as
hand-labeled training data. All reported differences between
CRF and ListReader F-measures are statistically significant at
p < 0.01 using both McNemar’s test [7] and a paired t-test.

To test ListReader’s semi-supervised wrapper induction, we
hand-labeled the first record of each list and ran ListReader
separately on it. We compare the results of ListReader to the
CRF, also run separately on each list with varying amounts
of training data. Table I shows the results. Hand-labeling just
the first record has a lower cost for the CRF compared to
ListReader (4.4 v. 4.5 labels per list), but the F-measure is
lower. Not until trained with the “three best” records does the
F-measure of the CRF approach that of ListReader. Even then
it is still significantly less and at over double the number of
labels plus the effort to select the “three best”—a combination
of a longest (1st Best), a least typical (2nd Best), and a most
typical (3rd Best) record.

To evaluate self-supervised learning, we ran ListReader on
one of the lists in semi-supervised mode and then executed it
in self-supervised mode on each of the remaining 29 lists. We
were thus able to see how well ListReader could use a wrapper
generated for one list to begin wrapper induction for another
list using no more human labeling than for new unique fields
not identified in the first list. For the CRF, we hand-labeled
all records in one list to train it and then executed it on each
of the remaining 29 lists. For both ListReader and the CRF,
we repeated the procedure 30 times, using each list in our
test set as a starting list, to compute the averages in Table II.
ListReader achieves a higher F-measure at almost a third the
cost of the CRF.

IV. CONCLUSIONS AND FUTURE WORK

These encouraging early results suggest that ListReader is
a viable new line of research for solving the general problem
of populating ontologies with data from lists in OCRed doc-
uments. ListReader outperforms a CRF (p < 0.01) in all our
tests showing that we can better leverage the characteristics of

list structure with a more tailored machine learning approach.
ListReader has the potential to reduce human effort, not only
limiting user involvement to labeling each distinct field of a list
only once, but for an entire collection of lists, like the child
lists in The Ely Ancestry. Additionally, ListReader uniquely
obtains rich ontological assertions that are more useful than
simply labeling words with named entity categories.

To continue this line of research, we will investigate using
a Hidden Markov Model instead of regular expressions as the
wrapper formalism to improve robustness and speed. Our goal
is to increase both precision and recall and to simultaneously
decrease cost during self-supervised wrapper induction. We
also intend to work with more complex lists and ontologies:
(1) lists split by intervening text or page breaks (e.g. the lists
in The Ely Ancestry that split across page boundaries), (2) lists
nested within other lists (e.g. the child lists nested within the
larger parent list in Figure 1), (3) lists with fields factored
out of each record, (e.g. the surname of the children in a
family factored out of the child lists in Figure 1), (4) lists
whose records describe entities from distinct categories (e.g.
child lists containing records with distinct structures for sons
and daughters), and (5) lists that can be modeled by joining
fragments of previously learned wrappers and ontologies (e.g.
parish christening records learned from joining parts of family
lists with parts of church administration lists).

REFERENCES

[1] B. Adelberg. NoDoSE — a tool for semi-automatically extracting
structured and semistructured data from text documents. ACM SIGMOD
Record, 27:283–294, 1998.

[2] M. S. Beach, W. Ely, and G. B. Vanderpoel. The Ely Ancestry. The
Calumet Press, New York, New York, USA, 1902.

[3] A. Belaı̈d. Retrospective document conversion: application to the library
domain. International Journal on Document Analysis and Recognition,
1:125–146, 1998.

[4] A. Belaı̈d. Recognition of table of contents for electronic library con-
sulting. International Journal on Document Analysis and Recognition,
4:35–45, 2001.

[5] D. Besagni and A. Belaı̈d. Citation recognition for scientific publi-
cations in digital libraries. In Proceedings of the First International
Workshop on Document Image Analysis for Libraries, pages 244–252,
Palo Alto, California, USA, 2004.

[6] D. Besagni, A. Belaı̈d, and N. Benet. A segmentation method for
bibliographic references by contextual tagging of fields. In Proceedings
of the Seventh International Conference on Document Analysis and
Recognition, pages 384–388, Edinburgh, Scotland, 2003.

[7] T. G. Dietterich. Approximate statistical tests for comparing supervised
classification learning algorithms. Neural Computation, 10(7):1895–
1923, Oct. 1998.

[8] H. Elmeleegy, J. Madhavan, and A. Halevy. Harvesting relational
tables from lists on the web. Proceedings of the VLDB Endowment,
2:1078–1089, 2009.

[9] R. Gupta and S. Sarawagi. Answering table augmentation queries from
unstructured lists on the web. Proceedings of the VLDB Endowment,
2:289–300, 2009.

[10] P. B. Heidorn and Q. Wei. Automatic metadata extraction from
museum specimen labels. In Proceedings of the 2008 International
Conference on Dublin Core and Metadata Applications, pages 57–68,
Berlin, Germany, 2008.

[11] K. Lerman, C. Knoblock, and S. Minton. Automatic data extraction
from lists and tables in web sources. In IJCAI-2001 Workshop on
Adaptive Text Extraction and Mining, volume 98, 2001.

[12] A. K. McCallum. MALLET: a machine learning for language toolkit.
http://mallet.cs.umass.edu/, 2002.


