
Intelligent Pen: A Least-Cost Search for Tracing of
Handwriting

Kevin Larry Bauer
Brigham Young University

March 2014

Introduction 

A subject of increasing interest in document processing and analysis is the movement to index the 
handwriting contained in scanned images of documents. Many of these documents are historical in nature 
such as census records, birth and death records, parish and church records, journals, marriage certificates, 
and lists of passengers on ships. 



Figure 1a. Detail of a 1920 census form with grid
lines highlighted

Figure 1b. Example of a word with an ascender and a descender

Before such records can be indexed, either manually or through automatic handwriting recognition, the 
handwriting must first be extracted. In seeking to extract the strokes of the handwriting in historical 
documents the most common problem faced is the descender problem, where the text goes below the 
printed line (Figure 1b). This is usually caused by letters with a “tail” such as ‘y’, ‘g’, ‘p’, and ‘q’. In 
other cases the text may include ascenders that go above the form line (usually for capital letters or letters 
like ‘l’, ‘d’, and ‘b’). In each of these cases an intelligent method for detecting and extracting the entire 
handwritten word is vital for effective handwriting recognition to take place.
 
This paper presents a novel approach to extracting the strokes of handwritten text in historical documents 
utilizing a least-cost path search algorithm. By tuning the parameters of the cost function the algorithm 
can be made resilient to missing line segments (gaps), extra line segments, interference from the form 
lines and other noise.

Related Work

Typically the goal of stroke extraction algorithms is to be able to apply on-line handwriting recognition 
methods to static, offline handwriting images. This is usually done by using a medial axis transform or 
some other thinning algorithm to extract a skeleton: a pixel-wide representation that outlines the basic 
shape of the handwriting.Various techniques exist for extracting such skeletons, such as diffusion maps 
[5] or line thinning [7, 8]. Figure 2 gives an example of a skeleton obtained by line thinning.

Once the skeleton is obtained, some tracing method is used to find an ordered path through the skeleton, 
either a local line-following algorithm or a global graph search. The key assumption made by algorithms 
such as these that rely on skeletonization is that the skeleton can be successfully extracted without loss of 
data or the introduction of noise, and the publications contain sparse information on what validation has 
been performed to this effect. To overcome these challenges a new approach is needed that is more robust 
to noise and works with older, degraded handwriting, and is tolerant to the existence of form lines that 
overlap the handwriting. Rather than create a skeleton or graph representation of the image, we propose 
an algorithm that would operate directly on the grayscale pixels of the original image.
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Figure 2. An example of a handwritten lower-case ‘a’ 
and its skeleton, obtained by line thinning. Taken from 
a figure in the paper by L’Homer [8].

Figure 3 gives some examples of the kinds of challenges this algorithm will have to overcome, such as 
gaps (Figure 3a), extra line segments introduced by noise (Figure 3b), and interference between adjacent 
cells (Figure 3c).

Figure 3a. Handwritten words in scanned documents are often 
degraded, with low contrast and gaps in the strokes, as 
highlighted by the red rectangles.

Figure 3b. Damage to the original document requires that 
the system be robust to noise and extraneous lines.

Figure 3c. Even in a low noise environment the handwriting may contain gaps or other interference.

Methods

To accomplish these goals, we will use a dataset of scanned document images from the 1920 and 1940 US
census. An example is seen in Figure 1a. 

Our algorithm, which we will call Intelligent Pen, will use its search function to find a path from one end 
of a handwritten word to the other. An optimal path in this context is one that goes through every stroke of
the word, following the stroke order of the document’s author, and ignoring any gaps or extraneous 
strokes. The path obtained by our algorithm will be piecewise-optimal in the sense that the final path will 
be created by taking the union of several locally optimal path segments. Although such a path will not 
guarantee global optimality, intuitively it should provide a good approximation so long as it follows the 
handwriting from start to finish.



Finding Starting Points

The algorithm begins by finding a set of potential starting points (the red dots in Figure 4). This can be 
done by creating a grid as seen in Figure 4. The width and height of the grid could be determined by an 
estimate of average stroke thickness, or adjusted to make the search more or less fine-grained. The 
neighboring pixels of each vertex in the grid will be examined, and the vertices that lie on a clearly 
defined stroke will be chosen as potential starting points. This will be determined by examining the 
neighborhood around the pixel for pixel intensity and gradient direction.

Figure 4. Using a grid search to find potential starting points

The reason for doing a grid search to identify starting points is that the boundaries of the form data are not
known beforehand. The actual “pen-down” point could be difficult or impossible to identify without this 
prior knowledge, and it may lie outside the form cell itself. However, the stroke extraction method 
described below compensates by performing a multi-directional search that allows it to function properly 
regardless of what coordinates are chosen as the initial starting points.

Cost function

As stated above, the algorithm will employ a least-cost path search to extract strokes from the image. 
Table 2 and Equation 2 summarize the cost function and what kinds of features it will include.

Image Feature Rationale Formulation
Pixel value Give preference to darker pixels f i

Change in direction Avoid jumping to different strokes at intersection f d

Change in line thickness Avoid jumping to nearby strokes f t

Is the pixel on a form line? Avoid extracting form lines as part of a stroke f l

 Distance to nearest gridline (if
outside cell bounds)

Avoid straying too far outside the cell f O

Has this pixel been visited? Avoid retracing the same path f v

Table 2

C ( p )=wi f i+wd f d+w t f t+w l f l+wO f O+wv f v
[2]

Other features discovered during the testing process will also be added into the equation as needed. The w
terms are weights which will be tuned using a training set of handwriting images that have been traced 



over by hand to manually extract the strokes. The weights chosen will be those with the highest accuracy 
in finding strokes and stroke order. 

The problem of tracing a piece of handwriting in an image can therefore be framed as the minimum cost 
path through a graph where each pixel is a node and the edge weight is the result of applying Equation 2. 
Appendix A gives a more detailed overview of the least-cost path search, which is based on Dijkstra’s 
algorithm for finding the shortest path through a graph.

Stroke Extraction

The goal of this process is stroke extraction, where a stroke is defined as a piece of a handwritten word. 
Several strokes, when merged together, form what will be referred to as a “trace-line”. A “trace-line” is 
here defined as an ordered sequence of pixels, containing the union of all pixels from the ink added to the 
page between the author placing the pen on the page and lifting it up again.

To achieve this, all start points found by the grid search in Figure 5 are placed on the stack, S. The top 
start point is then popped off the stack and the stroke extraction process proceeds as shown in Figure 5. 
Beginning at a start point s, the algorithm will create a circle of radius r centered at s, and choose several 
terminal points ti evenly spaced around the circle. (Figure 5a). For each ti, the least-cost path from s to ti 
will be found (Figure 5b). As paths are found for each ti, some of these paths will have sections that 
overlap or have consensus with one or more other paths (Figure 5c). This is because the search is optimal,
meaning that the best path from s to C will be the same regardless of whether the end goal is to arrive at ti

or at tj.

Algorithm 1: Consensus Stroke Extraction

INPUTS: 
    A stack, S, of potential starting points
    A Global set of consensus strokes G
OUTPUTS: 
    A consensus stroke C
    A set of additional potential starting points that are added to the stack

while S is not empty:
    get a starting point, s, from S
    if s is already on or near a point in G:
        remove s from S and begin again
    generate a set of free points, ti, using a circle of radius r (Figure 5a)
        initialize a local consensus path C (as empty set of pixels)
        for each free point ti,:
            Path pi = FindBestPath(s,ti) // FindBestPath() = Dijkstra’s search //

    for each pair of paths p1, p2: // p1 is the path from s to ti, p2 is the path from s to tj. (Figure 5c)
        for each pixel q1 in p1:

for each pixel q2 in p2:
      if q1 = q2 and q1 is not in any path in G: // Because the search is optimal shared points will be 

   // part of the globally optimal path. 

        Add q1 and q2 to C
Add each endpoint, ei of C to S (Figure 5d)
Add C to G

Each of these overlapping path sections, which we will refer to as consensus strokes, will be saved. 
Adjacent consensus strokes will be merged to form trace-lines (Figure 5i and Algorithm 2). In Figure 5d 
we see that the example start point is connected to 4 consensus paths terminating at points A, B, C, and 



D. Each of these 4 points is then placed on the stack with the other potential start points. The top one is 
then popped off the stack and the algorithm begins again with A as the new start point, recursively 
exploring each start point until the stack S is empty. Once S is empty, the algorithm terminates. The 
pseudocode for this process is shown above in Algorithm 1.

Figure 5a. To begin, 
evenly-spaced free points, ti  
are chosen on a circle of 
radius r centered at the start 
point s.

Figure 5b. The least-cost path
to each of these free points (ti 

and tj) is calculated.

Figure 5c. Pixels that lie on or
near the path to more than 
one free point are saved as 
consensus strokes.

Figure 5d. The endpoints of 
these consensus strokes 
become new start points, A, 
B, C and D. 

Figure 5e. Using A as a 
startpoint, new consensus 
strokes, p1 and p2 (orange) 
are found.

Figrue 5f. Using point B as a 
startpoint the blue consensus 
stroke is found.

Figure 5g. Likewise, the 
purple stroke is found by 
starting at point C.

Figure 5h. Finally D is 
popped off the stack and the 
green consensus stroke is 
obtained.

Figure 5i. Once consensus paths are found for D the algorithm continues with whatever was on the stack below S. Consensus 
paths whose starting points are the endpoints of another path (such as the paths from A, B, C, D, and S) are combined into a 
single stroke (the yellow path). Consensus paths whose start points are not the end point of another consensus path will be treated
as a separate stroke.

Combining Strokes into Trace-Lines:

Each iteration of the above process will extract a consensus path composed of pixels that lie on multiple 
shortest paths from a start point to an endpoint. Once this process has terminated individual consensus 
paths will be combined to form strokes. This will be fairly simple since the endpoints of each consensus 
path are used as starting points for the next iteration. The pseudocode for this step of the process looks 
like this:

ti

tj

ti

tj

ti

p
2

p
1



Algorithm 2: Stroke Merging 

INPUTS: 
    A set of Consensus strokes G
OUTPUTS:
    A set of trace-lines, 

for each path p1 in G:
    for each path p2 in G:
        if the start point of p2 is the start point of p1:
            reverse the order of p2 so its start point is now its end point
        if start point of p2 is endpoint of p1

        or start point of p1 is endpoint of p2

p1 =  p1   p2

Remove p2 from G

After one iteration, p1 will be a complete trace-line. Note that by this definition a trace-line may branch, 
such as at point A in Figure 5. Because they are not connected to p1, any remaining paths in G must 
necessarily lie on different trace-lines (for example, the yellow and green lines in Figure 5i), which will 
be identified on subsequent iterations. The trace-lines are then ordered, with the longest path being first 
(since this is probably the main skeleton of the word), followed by all the shorter paths in a left to right 
order (since these are probably things like crossing ‘T’s or dotting ‘I’s).

As mentioned above, because of the Bellman Principle of Optimality, any subsection of an optimal path is
itself an optimal path, which means each consensus path is an optimal path between its endpoints. 
Although the converse is not necessarily true (the union of multiple adjacent optimal paths is not 
guaranteed to be an optimal path), by carefully choosing the radius r and the parameters of the cost 
function the algorithm should follow the handwriting well enough to output trace-lines that are close to 
optimal for the entire word.
 
Bounds Extraction

As the algorithm proceeds it keeps track of each point that lies on a stroke. The boundaries of the word 
are therefore given by drawing a rectangle around the min and max x and y coordinates of the union of 
the extracted strokes. 

Validation

One challenge in validating the accuracy of trace-lines is that little work has been done in extracting 
complete trace lines from offline historical documents. Also, validation methods vary between different 
proposed methods, with different aspects of the handwriting being considered as ground truth. In seeking 
to validate the effectiveness of our method we need to look at its ability to solve the ascender/descender 
problem as well as its ability to extract strokes into accurate trace lines. We propose two forms of 
validation for our method. The first will show quantitatively how reasonably the trace-lines extracted by 
Intelligent Pen follow the handwriting, while the second will show qualitatively how Intelligent Pen 
overcomes the limitations of skeletonization algorithms in the context of historical document analysis.

Kennard et al. [36] describe a handwriting recognition algorithm that achieves over 90% accuracy for 
in-vocabulary words. Kennard’s algorithm accomplishes this through the use of a medial axis transform 
and image morphing to align two handwritten images. Since we have access to a working implementation



of this method, this presents an ideal opportunity for validating the accuracy of our extracted trace-lines. 
We will use a dataset composed of “clean” handwriting images (Figure 6a). “Clean” in this case meaning 
free from the noise and degradation typically observed in historical documents. We will obtain a measure 
of how well Intelligent Pen’s trace-lines actually model the handwriting by comparing our trace-lines 
against the medial axis transform. The intuition behind this is that for such “clean” images the medial axis
should represent a statistically ideal representation of the handwriting. If our trace-lines compare closely 
with the medial axes, this will allow us to infer that they could also be used to achieve comparable 
accuracy in handwriting recognition. 

To perform this validation we will treat our trace-lines as binary images and compare them with 
Kennard’s medial axes using distance maps, where points on the medial axis will have distance 0 and 
points emanating out from the medial axis will have positive signed distances (Figure 6c). Therefore, by 
overlaying a trace-line on the corresponding distance map we can obtain a similarity measure between the
trace-line and the medial axis transform by summing the distance values of each. 

Figure 6a. An example from [37] of a “clean” piece of 
handwriting. 

Figure 6b. The distance map associated with Figure 6a, also 
taken from [37]. Darker shades represent greater distance from 
the medial axis. The medial axis is outlined in blue. 

Figure 6c. Detail of the distance map for the letter B from Figure 6a. The medial axis (marked in red), has distance zero. Other 
pixels are assigned a value based on their 4-distance to the nearest medial axis pixel.

Where a coordinate on the trace-line lands on a distance of 0, there is a point on the medial axis 
representation that corresponds exactly to the trace-line. Therefore, summing over all distances 
corresponding to a given trace-line will tell us how closely our trace-line corresponds to the medial axis. 



Lower sums imply stronger similarity; higher sums reveal greater differences. The summed distance will 
represent the total distance between the trace-line and the medial axis. Dividing this sum by the number 
of points in the medial axis will give us the average, per-pixel distance. 

We can then make use of a chi-squared test to report the similarity of our trace-lines with the medial axes 
across a set of 1000 words, using the medial axis as the expected value and the trace-line coordinates as 
the observed value. This will capture the squared difference between the two representations, amplifying 
places of greater disparity. A low chi-square score will confirm the validity of our extracted trace-lines. In 
other words Intelligent Pen method can be considered valid if it consistently obtains trace-lines with a low
chi-square score.

Having shown that Intelligent Pen obtains a good approximation of handwriting in “clean” situations, the 
next step will be to show that it can perform better than existing methods in less ideal circumstances. 
Much of the existing work is based on skeletonization algorithms which are known to have problems with
handwriting such as that seen in older, noisy historical documents. Therefore, in our comparisons we will 
also isolate words or word components that have breaks, drop-outs, noise, etc. that are known to be 
problematic with the skeletonization techniques and demonstrate how the optimal trace-line hops across 
these breaks. We will also show how our trace-line follows faint strokes that are not preserved with 
binarization and subsequent skeletonization. Finally, we will demonstrate the robustness of our trace-lines
in areas of handwriting that otherwise produce noise in the medial axis skeleton. 

Our trace-lines will attempt to preserve stroke order and we believe stroke order is an important feature 
for subsequent handwriting recognition. However, for purposes of comparison, and because we do not 
have stroke order information for the medial axis and skeletonization techniques, we have chosen to set 
stroke order aside and simply treat the trace-line as a binary image. 

Initial Results:

A complete working version of the algorithm is still in development. Thus far a simple working version of
the least-cost search function has been created using only the f i  and f d  coefficients. The initial 
results, shown in Figures 7 and 8, are quite promising.

Figure  7a.  One  of  the  main  challenges  faced  by  existing
methods is how to handle gaps in the handwriting.

Figure 7b. The least-cost path obtained by searching from the
top-left corner to the bottom-right corner of 7a. Only the

f i  and f d  coefficients were used in the cost 

function.



Figure 7a shows a simple example that poses a challenge for existing methods: a smooth line with 
multiple gaps. We can see from Figure 7b that Intelligent Pen’s search function is able to find a smooth 
path that passes through the line and correctly jumps across the gaps. 
 
In Figure 8 we see a more complicated example. Instead of jumps the stroke doubles back several times 
and there are several stray strokes simulating noise. Intelligent Pen is able to ignore the noise and 
correctly follow the darker line, with the result shown in Figure 8b.

Figure 8a. A stroke with some added noise and 
curves.

Figure 8b. The least-cost path obtained for 8a using the same 
parameters as 7b. Note that the path ignores the noise and 
follows the smoothest path through the image.

Conclusion:

We have shown how a least-cost search function can be used to improve on existing stroke 
extraction methods while simultaneously solving the ascender/descender problem. While further 
work is needed to refine the algorithm and its parameters, the initial results are promising and 
able to overcome some common pitfalls, and by framing the problem as a least-cost search the 
algorithm can be easily optimized for specific needs and situations.
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Appendix A: Least-Cost Search Algorithm

  Figure A1. The initial cost matrix for a simple image with the start point marked in 
  green and the destination point marked in red.

  Figure A2. The start point is initialized with a cumulative cost of zero and marked as 
  visited (throughout this figure the visited nodes are marked in yellow). All of its 
  neighbors are also added to the graph. Their cumulative cost is simply their value from 
  the initial cost matrix.

  Figure A3. The neighbor with the lowest cost is added and marked as visited. Each of 
  its neighbors is added with a cumulative cost of their own value from the initial cost 
  matrix, plus that of the current node (75 in this case). 



  Figure A4. The node with the next lowest cost (101) is visited and all its neighbors 
  that aren’t already in the graph are added with a cumulative cost of 101 plus their 
  initial cost.

  Figure A5. The process continues, sometimes moving in the direction of the target 
  point, but not always. 

  Figure A6. At this point the algorithm visits a node with no neighbors not already in 
  the graph. This constitutes a dead-end, and the node can be discarded since it will not
  be part of the optimal path to the target node. Here and throughout the diagram such
  dead-end nodes will be marked in orange.



  Figure A7. Here the graph is shown after 11 time-steps.

  Figure A9: After 29 time-steps the search algorithm has reached the target node.

  Figure A10: Once the target node is reached the optimal path is found by following
  the trail of pointers back to the start node. 


