
“Sanity Checks” over Auto-Extracted
Family-History Data

Scott N. Woodfield1, David W. Embley1,
Stephen W. Liddle2 and Christopher Almquist1

1 Department of Computer Science
2 Information Systems Department

Brigham Young University, Provo, Utah 84602, USA

Abstract. A declarative constraint-violation checker and message gen-
erator can ease both administrator constraint specification and user ad-
judication. A prototype implementation of “sanity checks” in the context
of an ensemble of automated information extractors illustrates its use-
fulness.

Keywords: automated information extraction, declarative constraint
specification, checks for unreasonable genealogical fact assertions.

1 Introduction

Automated information-extraction systems (and sometimes even humans) can
extract erroneous (even ridiculous) genealogical data. Mothers do not bear chil-
dren before they are born, and it is highly unlikely that they bear children before
age ten or eleven or after age fifty or sixty. Coding procedurally to recognize and
report conflicting, erroneous, and unreasonable fact assertions is possible, but
the declarative solution we proffer here requires less effort, is more modular and
generalizable, and is more conceptually sound.

Section 2 describes the formal conceptual model that underlies the solution.
Section 3 describes its application to detecting and reporting potentially erro-
neous fact assertions extracted automatically by an ensemble of automated tools.
Section 4 summarizes and makes concluding remarks.

2 Conceptualization

The proposed declarative solution has an evidence-based conceptual model [1]
as its formal foundation. Figure 1 shows an example—a conceptualization with
its predicates, hard and soft constraints, and documenting evidence.

The diagram in Figure 1 graphically represents a logic database schema [2].
Object sets, depicted as named rectangular boxes, are one-place predicates (e.g.
Person(x)). Relationship sets, depicted by lines connecting object sets, are n-
place predicates (e.g. Person(x) has BirthDate(y)). Observe that predicates are



2 S.N. Woodfield, et al.

Fig. 1. Depiction of Conceptual Model Features

in infix form and that predicate names come directly from the text and reading
direction arrows in the diagram.

Constraints can be hard (returning only either satisfied or not satisfied when
checked) or soft (returning a probability of being satisfied when checked). The
conceptual-model diagram in Figure 1 has 28 hard participation constraints spec-
ifying a minimum and maximum number of times an object may participate in
a relationship set. Each object-set/relationship-set connection has one partici-
pation constraint as denoted by the decorations on the ends of the connecting
lines. The diagram also shows 4 hard subset constraints (denoted by triangles on
connecting lines) specifying that the objects in an object set must be a subset of
the objects in another object set. In addition, Figure 1 shows one of many pos-
sible soft constraints as a probability distribution (Person’s Age at Child’s birth
has Probability). The figure indicates, as well, that evidence can be associated
(and in our automated-extraction application, is associated) with every predicate
assertion instance (Child is child of Person statements found in a document).

3 Application

3.1 Hard Constraints

The conceptual-model diagram itself declaratively specifies hard cardinality con-
straints [3]. For example, it specifies that a person has one and only one birth
date. The Person side of the Person has BirthDate relationship set has no “o”
(“o” for “optional”) on its connection and thus declares mandatory participa-
tion of a person object in the relationship set (at least one birth date). The
BirthDate side of the relationship set has an arrowhead, which specifies that the
relationship from Person to BirthDate is functional (at most one birth date).

Figure 2 shows an example of the proposed arbitrator interface with ex-
tracted data, warning markers, messages, and original text for the case of more
than one birthdate having been extracted for Theodore Andruss. The generated
message explains that one of the extraction tools correctly extracted “i860” as



“Sanity Checks” over Auto-Extracted Family-History Data 3

Fig. 2. Two BirthDates found for Theodore Andruss.

Theodore Andruss’s birth date, which was changed to “1860” in a subsequent
OCR-error-correction step. Because of the OCR error, however, another tool
which expected date years to always have four digits found “1862” as the closest
birthdate matching the pattern “b.\s\d4” following the name “Theodore An-
druss”.3 In this case, the arbitrator should do nothing since the ensemble has
already chosen the correct birth date for Theodore.

Interestingly, the declaration of a participation constraint is sufficient to gen-
erate code that both checks for participation constraint violations and handles
them. In a populated model instance counting the number of times an object
participates in a relationship set is straightforward as is checking whether the
count is within a min–max range. Similarly, generating a handler that lists the
violating objects in a statement template is also straightforward.

3.2 Soft Constraints

In our application soft constraints are based on probability distributions. Since
the conceptual model is, in essence, predicate calculus, constraint rules can all be
Datalog-like implications [4]. The antecedents of an implication are predicates
in the model or derived from these predicates or from given probability distri-
butions, and the single consequent gives the probability of a condition being
satisfied. For example, a rule for age difference between a parent and child is:

Child(x1) is child of Person(x2),
Person(x1) has BirthDate(x3),
Person(x2) has BirthDate(x4),
Age(x5) = Age(YearOf (x3) − YearOf (x4)),
person’s Age(x5) at child’s birth has Probability(x6)
⇒
Person(x2)’s Age(x5) at Child(x1)’s birth has Probability(x6).

Any probability that fails to meet a user-specified threshold is a constraint
violation. Violations tell us that one or more of the antecedents must be incorrect.

3 In the interface, hovering over a record highlights the information in the fields on
both the form and the document from which the ensemble of extractors obtained
the information. If a check-message is associated with a field in the record, hovering
also causes a circled-question-mark icon to appear. The icon’s color indicates the
highest level of severity among the messages—green for an informational message,
orange for a warning message, and red for an error message. Clicking on the icon
pops open the associated messages.



4 S.N. Woodfield, et al.

Fig. 3. Unreasonable Age Difference for Mary Eliza Warner and Her Children.

Fig. 4. Questionable BirthDate (Parent-Child Age Difference Unreasonable).

Thus, each asserted model predicate instance should be checked. Figures 3 and 4
show a check request displayed for a user.

Each possible constraint violation has an application-dependent handler. In-
terestingly, given only the Datalog, both the code to check the for a violation
and code to handle a violation can be generated automatically. The checker code
need only run its usual interpreter on the given the Datalog statement, which
in essense creates a relational table in which each tuple is the join all predicate
instances that satisfy the Datalog statement. These tuples are then fed one at a
time to the handler. Given a user-chosen threshold for constraint violation, the
handler fills in a message template with extracted instance data found to be in
violation. The handler generator substitutes textual instance values for variables
in unary predicate-statement phrases (such as BirthDate(x)) and formats them
for ease of reading. Since non-textual objects (such as Person instances and Child
instances) come into existence by the principle of ontological commitment, the
handler generator replaces unary person predicates with the person’s name—the
trigger for committing the ontology to recognize the existence of a person. The
pop-ups in Figures 3 and 4 show the result for our example. Note that since it is
not known which of the antecedent predicates containing the extracted data is
in error, the system must generate messages for all of them. Thus, similar to the
message in Figure 4, a third message for the possibility of the child’s BirthDate
being in error is also generated and revealed when the user clicks on the warning
icon associated with the child’s birth date.



“Sanity Checks” over Auto-Extracted Family-History Data 5

4 Summary and Concluding Remarks

The proposed system for doing “sanity checks” over asserted family-history infor-
mation extracted automatically from historical documents has several desirable
properties:

1. Code that checks for and handles any and all model-specified participation-
constraint violations need only be written once (or can even be generated).

2. Adding a probability-distribution constraint requires only the writing an
appropriate Datalog rule.
(a) Code to check and handle any rule need only be written once (or can be

generated).
(b) Rules can be added, modified, and retracted dynamically.
(c) With access to large genealogical data repositories such as those owned

by FamilySearch [5], probability distributions for desired rule consequent
statements are readily obtainable.

3. To the extent to which user-specified Datalog rules reflect reality, constraint
checkers and handlers never error in identifying possible extraction errors.
(They do not, however, know which one or more of the extracted fact asser-
tions in its antecedent predicates are in error.)

These properties reduce the effort required of a system administrator who has the
responsibility to code both constraint checkers and constraint-violation handlers.
By pointing out possible errors at different levels of severity, adjudicators receive
“just-in-time” messages for their task of arbitrating among conflicting assertions
made by the various extraction tools in the ensemble and adding and retracting
missed fact assertions.

References

1. D.W. Embley, S.W. Liddle, and S.N. Woodfield. A superstructure for models of
quality. volume LNCS 8823, pages 147–156, 2014.

2. D.W. Embley and A. Zitzelberger. Theoretical foundations for enabling a web of
knowledge. In Proceedings of the Sixth International Symposium on Foundations of
Information and Knowledge Systems (FoIKS’10), pages 211–229, Sophia, Bulgaria,
February 2010.

3. S.W. Liddle, D.W. Embley, and S.N. Woodfield. Cardinality constraints in semantic
data models. Data & Knowledge Engineering, 11(3):235–270, 1993.

4. H. Gallaire and J. Minker, editors. Logic and Data Bases, Symposium on Logic and
Data Bases. Advances in Data Base Theory. Plenum Press, New York, 1978.

5. FamilySearch. http://familysearch.org.


