

Genealogical Indexing of Obituaries Using Automatic Processes

Patrick Schone, Jake Gehring; Family Search, Salt Lake City, Utah.

Abstract

Due to the ability of modern obituaries to provide rich

genealogical information for family members who have died within

the bounds of “living memory,” family history organizations have

recently begun to acquire and index obituaries in vast quantities.

The indexing process for these documents is typically done using

human labor. Yet we describe an effort by FamilySearch which

leverages various kinds of machine learning, statistical analyses,

and rule-based processing to automatically index such documents

without human intervention at rates thousands of times faster than

humans while still achieving high levels of accuracy.

1. Introduction
 In recent years, genealogical organizations have noted that the

older historical records they have typically acquired for family

history purposes do not adequately address the needs of patrons

who are seeking relatives who existed within living memory.

Obituaries, however, do contribute significantly to living memory

– especially those that have been created in the past 30 years.

Consequently, FamilySearch, like other organizations, has sought

to acquire large volumes of obituaries and create genealogical

indexes for them. In fact, starting in 2014, FamilySearch began to

acquire tens of millions of obituaries that were “born digital” (i.e.,

created originally in digital form) and announced to their indexing

volunteer workforce to be beginning “The Year of the Obituaries”

[1]. Many individuals agreed to help in the indexing of this data

even though 15-30 minutes are required to index each obituary.

 These born-digital documents are raw digital text as opposed

to images. So a question comes to mind: can natural language

processing technology adequately solve this problem and thus

allow volunteers to devote their efforts to other key endeavors?

 Entity and relation extraction have been areas of active

research over the past twenty years in the research community, and

these technologies have the potential of contributing significantly

to obituary indexing efforts. Entity extraction seeks to identify key

elements of a text such as names of people, dates, locations, and so

forth. Relation extraction in this context is technology to

automatically draw connections between identified entities (eg.,

PERSON#1 is-father-to PERSON#2).

 In addition to these forms of content extraction technologies,

others capabilities are required in order to solve the entire indexing

problem. For examples, gender detection, coreference analysis,

and name chunking all could play roles in automatic indexing.

Gender detection seeks to use the names of individuals and other

contextual clues to determine whether a person is male or female.

Coreference analysis must track that “Robert K Jones, Jr.” could

also appear in the text as “RK” or “Bobby” or “Mr. Jones” or “he.”

Name chunking seeks to identify the roles of the personal name

constituents (eg., Robert K is a given name phrase, Jones is a

surname, “, Jr.” is an ordinal phrase).

 FamilySearch has created machine-learned and statistical

versions of these and other related components and has combined

them into a system (affectionately referred to, by some, as the

“Robokeyer”) which can produce indexes that resemble those of

human indexers. We have evaluated the performance of this

automatic indexing system against millions of human-indexed

obituaries. Moreover, after our system accuracy attained

reasonable levels, we likewise began publishing results to the

world using this automation.

 A machine indexer can provide massive increases of

productivity over what individual humans can provide. Before the

end of 2015, FamilySearch was able to “robokey” 26.5 million

obituaries --which reference over 200 million individuals—and the

results will come online in the beginnings of 2016. This task was

performed in five days on a reasonably-sized compute cluster,

whereas the same task would have taken at least 1500 career years

for a person indexing obituaries as a full-time job.

 Despite these huge benefits of productivity, there are also

negatives to the use of automation: the Robokeyer still make errors

and some of these can be quite unusual. More specifically, humans

tend to make errors of omission and interpretation and errors in

spelling when they index obituaries. Yet the computer tends to

make errors of interpretation regarding key information; and it can

also lose the “semantic thread” of textual documents which can

result in laughable or even upsetting outcomes. To help mitigate

some of these problems, we implemented a machine-learning-

based confidence tagger which attempts to predict if the

Robokeyer thinks its results will be “sweet” or “sour” with the

expectation that only those documents that are deemed non-sour

will be forwarded for publication. Though this kind of confidence

predictor cannot hope to predict erroneous results with 100%

accuracy, it is still able to appreciably increase the perceived

resultant quality of the Robokeyer.

 The success of this effort has led FamilySearch to ask: could

Robokeying still work when obituaries are identified in actual

newspaper print as opposed to born digital? Estimates are that

there as many as ten times more images of obituaries than there are

born-digital ones. This would require a pre-processing step of

finding and transcribing obituaries on newspaper pages. Even if

people were to pre-identify the image snippets containing the

obituaries, commercial OCR engines for image transcription favor

transcribing recent documents and are not well-suited to historical

newsprint. We have therefore also worked to build an OCR engine

which has been yielding results that exceed those of commercial

engines on historical newspapers. It is our expectation that we will

begin coupling our OCR (which we call Athilos) and the

Robokeyer in 2016 to begin indexing obituaries from newsprint.

 In this paper, we will provide a general overview of the

Robokeyer and we describe in some detail its constituent

technologies. We also discuss how the system is scored against

human indexing, the levels of performance that it attains on

different evaluation tasks, the kinds of errors that are observed, and

the confidence predictor that is used to enrich the results. At the

same time, we indicate the additional pieces of information that the

Robokeyer is able to extract which would be beyond the levels that

human indexers could afford to do. Lastly, we conclude with a

brief overview of our Athilos OCR engine, its performance, its

limitations, and expectations we have for coupling it with the

Robokeyer.

2. Robokeyer Technology Components
When humans perform the task of indexing obituaries from born

digital documents, they must do a number of steps. These include:

(a) identification of person names, places, dates, and other key

information; (b) drawing connections between these facts such as

“date D is the birth date for person P”; (c) disambiguation of

names; (d) discarding of irrelevant pieces of data; (e) making

inference regarding the gender of people names; (f) inferring given

versus surname bounds, as well as titular, occupational, or

generational name components; (g) perform family relationship

mathematics (X is Z’s sister and Z is wife of Y, so Y is X’s

brother-in-law); and (h) identifying the principals in the story.

When humans are indexing, they also have to determine (i) if the

information they are looking at appears to not be an obituary, and

(j) if they believe they are not personally equipped to handle the

obituary. To emulate the human, the Robokeyer must be likewise

able to do these same steps. In this section, we describe each of

the technologies which we have created to follow human-like

processes. In addition, the Robokeyer is able to have functionality

which is beyond the scope of what human indexers might be asked

to do and we describe that as well.

2.1. Identifying Entities
Entity tagging is a technology which has been in existence for

decades [2]. The notion behind entity tagging is that a computer is

used to detect certain classes of information in raw textual output

such as the names of people, places, dates, times, organizations,

and so forth.

 For those not in the field of entity tagging, this technology

seems like it could be trivially implemented through the use of lists

and rules. Usually, though, such solutions are extremely brittle

and yield weak and highly error-prone results. These errors are the

result of issues such as words having multiple parts of speech [“I

gave it to Pat” vs “Pat it on the head”]; use of the same verbiage

for different kinds of entities [as in “George Washington”

(PERSON), “Seattle Washington” (LOCATION), “University of

Washington” (ORGANIZATION), “gave him a Washington”

(MONEY), etc.]; and phrases that were not seen before [eg., Spyro

Agnew].

 FamilySearch has created a hybrid entity tagger which is

based on coupling machine learning with post-processing rules.

Specifically, the system attempts to tag 46 different entity classes:

address, age, animal, chemical, gender-specifier, location

referencer, coreference marker, anchored date, unanchored date,

duration, historical event, religious event, personal event, four

types of demonyms (locational adjectives), family member

markers, associate markers, foods, games, health conditions,

geopolitical entities, earth surfaces, non-earth places, structures,

money, occupations, seven types of organizations, percents, people

names, phone numbers, flora, quantities, times, titles, vehicles,

weapons, websites, and works of art.

 The machine learning portion of the FamilySearch entity

tagger was constructed using a conditional random field (CRF)

which is built using the Mallet system from the University of

Massachusetts [3]. The CRF as we have constructed it leverages

information about neighboring words, suffixes, case information,

punctuation, major place names, places within a given locality,

less-rare surnames, and less-rare given names. The CRF is trained

using human-provided entity-tagged text which, for us, is a corpus

of over five million words. The CRF training processing takes

approximately 2.5-3 weeks to train on a single CPU and to the best

of our knowledge, it cannot currently be parallelized.

 At recognition time, after the trained CRF is applied to the

raw text to get a first estimate of the entities contained therein,

human-created rules are then applied to compensate for limitations

in the CRF tagging. These limitations are usually due to

insufficient context and/or to rare or previously-unseen situations.

 When applied to obituaries, our entity tagger achieves 95-

97% F-score. An “F-score” attempts to balance precision and

recall and is defined to be the harmonic mean between the two. So

roughly speaking for our system, a 96% F-score means that the

system identifies about 96% of the entities that it is supposed to

find; and of those it finds, it tags them with about 96% accuracy.

An entity tagging system which achieves F-scores in the low 90s%

is usually considered to be decent. Clearly, then, 96% -- despite

the residual errors -- is a very high performer in the entity space.

Even so, it is important to recognize that some of the most frequent

errors that are made concern people names and place names ...

which happen to be the most important ingredients for indexing.

 Figure 1 shows the output of the entity tagger on a previously-

unseen obituary. As can be seen from the illustration, our entity

tagger is able to tag many of the phrases that appear in the obituary

with the class of information represented by the phrase. However,

the performance of our system is dependent on the kinds of

training data it is provided with, so even though the system may

perform well on obituaries, it is not guaranteed to have the same

level of performance on some other unseen text genre.

Figure 1: Entity-Tagged Obituary

2.2. Identifying Relations
After entities are determined, it is next important to identify the

associations between those entities. This is usually referred to as

“relation tagging.” FamilySearch has created a relation tagger

which can wire together the automatically recognized entities. To

be concrete about what relations are, suppose there is a phrase such

as “Pebbles was born to Fred and Wilma Flintstone.” This phrase

FIGURE 1: ENTITY TAGGED OBITUARIES

gives rise to at least the following relations:

HAS_EVENT(“Pebbles”, “born”), HAS_FATHER(“Pebbles”,

“Fred”), HAS_MOTHER(“Pebbles”, “Wilma Flintstone”), and

HAS_SPOUSE(“Fred”, “Wilma Flintstone”).

 Like the entity tagger, our relation tagger is a hybrid system

which begins with a machine- learned recognition phase followed

by a sequence of human-provided rules. Prior to training, our

system requires the existence of human-marked texts which

indicate how entities are related to each other. Figure 2 depicts

how this might look in that there is a pallette of relation types and

the annotators pair together entities with lines that represent the

connecting relations.

 During training, we supply this human-tagged data as well as

word usage statistics, word contexts, word similarity, and other

kinds of features to a maximum entropy learner in order to

discover when two different entities should be wired together by a

relation. We take advantage of the maximum entropy learner

found in the OpenNLP [4] package. This system is used in a first-

pass relation recognition stage and it is followed by the application

of rule-base corrections.

Figure 2: Relation-Tagged Obituary

 It should be mentioned, though, that our relation tagger is

perhaps a little different than what others might produce. Suppose

the text says “John Smith passed onHe was born Oct 13, 1901.”

Some systems might like to draw an association between the

person “John Smith” and the date “Oct 13, 1901” and say

BIRTH_DATE(“John Smith”,”Oct 13, 1901”). However, we

prefer to capture the individual sub-steps that lead to that

conclusion. In our case, for example, we would attempt to capture

HAS_EVENT(“He”, ”born”), STARTING_DATE(“born”, “Oct

13, 1901”), and IS_SAME_AS(“John Smith”,”He”).

 By doing this, we tend to capture information that is often

closer together textually and therefore less likely to be in error and

more likely to be learnable. It also means that with a reasonably

smaller number of relational constructs (34 in our case), we can

capture almost any information that we have interest in

discovering.

 Relation tagging is typically a more complicated process than

entity tagging because more information is required before one can

make a proper decision. From our estimates, our system achieves

F-scores of about 90% on obituaries which means that many key

relations are not discovered. Fortunately, there is sometimes

redundancy in obituaries, so even though a relationship may not be

accurately identified in one particular place of the text, the desired

information may be ascertained somewhere else.

2.3. Name Disambiguation
In an obituary, the text may refer to “Robert Smith,” or “Bob

Smith” or “Robby” or “him” – and all these different text strings

may co-refer to the same individual. For the sake of indexing, it is

imperative that after we identify all of the instances of people that

we cluster together those instances that refer to the same person.

This is because we want to make sure that the index that gets

produced only has one instance of each person. Furthermore,

indexing guidelines require the indexer to provide an “OR”

separated listed to identify the various name variants of an

individual (“Robert OR Bob OR Robby Smith”).

 As was mentioned briefly in Section 2.2, one of the relations

that the relation tagger has been given the task of finding is the

“IS_SAME_AS” relation. When the relation tagger has run and has

done pairwise similarity analyses on each instance of names and

pronouns, we perform a head-finding algorithm to link each textual

instance of an entity with its corresponding head – which to us is

the earliest-appearing and longest name representing the entity. In

the case mentioned at the beginning of this section, “him,”

“Robby,” and “Bob Smith” would all point to the head phrase

“Robert Smith.”

2.4. Disregarding Irrelevance
Personal names appear in four kinds of contexts in obituaries. The

most obvious way is that they appear (1) as the deceased or as an

associate of the deceased. Yet the following phrases also illustrate

other ways in which they appear: (2) “He was a serious fan of John

Wayne.” (3) “His funeral will be handled by Bob Jones and

Sons.”; and (4) “He liked to read “Sherlock Holmes.”

 When indexing is performed, the indexers are really only

supposed to index the first type of name instances (which we will

call type-1 name instances). It is for this reason that we have

attempted to recognize a number of odd types of entities such as a

“Work of Art.” We do not really care that a work of art like

“Sherlock Holmes” has been mentioned, but rather, we want to

avoid treating the embedded name as if it were the deceased or an

associate of the deceased. In most cases, the entity tagger has

helped us to be successful at eliminating type-3 and type-4 person

mentions using this approach.

 Type-2 mentions should be easier to eliminate because they

are famous people names and one should be able to use a list for

elimination. However, as we have observed human-tagging

behavior, we see that they are often inconsistent when eliminating

the names of famous people. As will be mentioned later, we score

the Robokeyer by comparing it to people; so we have not

eliminated famous names as often as we should have. Notable

exceptions to this are the names of Jesus Christ and his early

associates like His apostles, as well as Elvis Presley, and a few

other people. We have encoded these few specific names directly

into our system to have it automatically exclude such results.

2.5. Detecting Gender
The indexing guidelines require that the indexer report the gender

of the individuals contained in the obituary IF there is sufficient

content to make such a determination. For example, if the

document talks about “John Smith” and says “He was born...” then

the indexers can conclude and report that John Smith is a male

because the individual is referred to as “He.”

 For the Robokeyer, we first attempt to follow the same

guidelines as humans do. If individuals are co-referent with a

gendered pronoun (he, him, she, her, etc), we mark the gender of

the individuals appropriately. Likewise, if the individual is

referred to as “Mr.” or “Jr.” then we can also provide a gender.

 When we are comparing our results to human results, we

really can do little more to provide gender information. However,

when we are indexing for release of the data to the public, we can

further supplement the gender-decision process by making use of a

tool which we created called the “genderAPI.” The genderAPI is a

statistical algorithm which uses FamilySearch’s database

information and all name parts of an individual to estimate the

probability that the name in question is male. When it is able to

make a decision, the genderAPI is rarely incorrect (probably less

than 0.5% error); but for names like “Stacy,” “Whitney,” and

others which could be more gender-neutral, it is not able to make

strong assertions about gender.

 Table 1 illustrates the performance of the genderAPI on the

names of individuals who were in the news at the time this paper

was written according to Google trends [5]. Individuals in the left

half of Table 1 are males and those in the right half are females.

Given that the genderAPI reports percentage of maleness, one

might treat numbers of about 20% or less as being indicative of a

female whereas those above 80% are likely indicative of a male.

Based on these probability thresholds, one can see that on the

Google trends individuals, the genderAPI was able to properly

predict the gender of all but one of the individuals.

Table 1. GenderAPI applied to Names from 2016 News

Male Name Prob(M) Female Name Prob(M)

Lamar Odom 94.0% Ronda Rousey 5.2%

Donald Trump 99.7% Ruby Rose 1.8%

Charlie Sheen 97.8% Rachel Dolezal 0.3%

Brian Williams 99.7% Adele 0.5%

Josh Duggar 99.3% Caitlyn Jenner 0.2%

Bill Cosby 97.9% Amy Schumer 0.3%

Taylor Kinney 80.5% Rumer Willis 82.5%

2.6. Chunking Names
Up until now, we have mostly mentioned specific elements of texts

that indexers needed to either distill out or disregard in order to

index data properly. Yet indexing guidelines also require people to

infer some information which is not expressed directly in the

obituaries. One of these elements of inference is to determine

when names pieces of the individual are surnames, given names, or

titles. Obviously there is some subjectivity to this task, but

humans do it fairly well.

 For the sake of the Robokeyer, we have also created

technology to do this task automatically. We refer to the

technology as a “name chunker” which attempts to identify given

name phrases, family name phrases, titular phrases, ordinal

phrases, and so forth.

 The technology is basically an entity tagger unto itself.

Rather than marking whether a phrase is a person or location, our

name chunker treats the name as a stream of text where it must

identify the name-entity roles of each word. Our system uses a

bigram hidden Markov model to learn name pieces. The chunker

can handle many forms of personal names, and it can even work

when names appear in reversed order, where surnames appear first;

and it can likewise handle nicknames like Richard “Fuzzy” Jones.

For names that come from regions of the world where multiple

surnames are used, the chunker can also identify the various

surname phrases; so “Juan Antonio de la Rosa de la Garza” gets

broken up into a given name phrase “Juan Antonio,” a surname

phrase of “de la Rosa” and another of “de la Garza.” Our

evaluations suggest that the chunker can accurately parse names

with at least 98% F-score when used in isolation.

 That said, names do not appear in isolation. For example, a

set of names might appear in context as follows: “Mildred,

Howard, Robert, and Samantha.” It may be the case that

“Howard,” when used in isolation, is more likely to be a surname

than a given name – so our first stage of tagging might mark it

thus. However, given that it is in a context where the words

surrounding it are all given names, we may conclude that

“Howard” is a given name. Thus, we use a second stage of

processing which tries to consider the context in which the

personal name appears in order to determine if the first stage’s

result should be overridden.

2.7. Relationship Mathematics
As mentioned before, we try to identify basic relations where the

entities that are being connected together with a relation are often

fairly close to each other text-wise. Sometimes these sub-relations

have to be composed together in order to identify a more complex

relation. Family relationships between the deceased and the other

people in the obituary is a type of more complex relation which

typically involves the combination of multiple sub-relations. For

example, suppose the obituary states “John Brown...is the father of

Richard (Nancy) of Boston and Lewis (Anne) of Chicago.”

Indexing guidelines require that the indexer must report the family

relationship of John Brown to Richard, to Nancy, to Lewis, and to

Anne. Under a perfect relation-finding scenario, our system would

have created the relation MEMBER_OF(“John Brown”, “father”)

and it would have noted that “Richard” and “Lewis” both

participate in a relation of HAS-A with the term “father.” The

system would also identify the relations HAS_SPOUSE

(“Richard”, “Nancy”) and HAS_SPOUSE(“Lewis”,”Anne”). So

the question is: what family relationship does one attach to

Richard, Lewis, Nancy, and Anne?

 To determine the family relationship that should be ascribed

to Richard and Lewis, we have created an inverse-of functionality.

These individuals are ascribed the relationship inverse-of(father).

The Robokeyer has been informed that inverse-of(father) equals

“child” or, if accounting for gender, it could likewise be “son.”

Thus the two males are given this family relationship of “son.”

 The relationship for Nancy and Anne is determined by the

“spouse_of” function. In essence, this means their relationship is

spouse_of(inverse_of(father)). If we simplify based on the

equation from the paragraph above, this would be spouse_of(child)

or, taking into consideration gender, spouse_of(son). The spouse

of a child is “child-in-law” and of a son is “daughter-in-law;” so

these would then be the relationships with which the system would

tag Nancy and Anne.

2.8. Principal Detection, Person Multiples and Non-
Obituaries
The millions of obituaries that were identified for processing were

selected through keyword searches by the company that owns the

rights to the obituary data. Their process for identifying obituary

articles was effective, but it was not 100% accurate. In addition to

actual obituaries, this process identified news stories about death,

stories where multiple people had passed away, and stories where

no human death is mentioned at all (eg., one sports team may have

‘killed’ another team).

 When a story is reported where there is no valid obituary

content, indexers have been asked to report “No Extractable Data

Image.” For all other stories, indexers are supposed to identify the

principals – which are the people who are the subjects of the story

and who are recently deceased. Both “no extractable data” and the

list of principals are not expressly marked by the text itself, so

these are items that must be inferred by the indexer.

 To make the Robokeyer perform this function, we first used

some amount of training data to identify phrases that appear more

often in no-extractable documents than in ones where extraction

can occur. Phrases that are particular indicators of no-extractable

data were strings such as “Lotto :”, “Pick Four,” “chance of

showers,” “Saturday partly cloudy,” “plaintiff alleges negligence,”

“commit simple assault,” “Senior center menus,” and “Public

Library will.” One can quickly see that these phrases are

indicative of weather reports, lotteries, crime logs, and public

service announcements.

 Though this was helpful, we sought techniques which could

significantly enhance our ability to determine whether there would

be zero, one, or multiple principals in a given story. Using

different features but the same maximum entropy toolkit that we

had used in creating our relation tagger, we developed a function

that could make the 0/1/2+ principal categorization with over 98%

accuracy. Something of particular note in this process was that

some of the seemingly unnecessary entity classes mentioned before

turned out to especially useful here. For example, “weapons,”

“vehicles,” “chemical,” and “flora,” were indicators of military

stories (eg., jets, tanks, grenades, etc) and of crime logs (eg., drugs,

marijuana, etc) where a crime was perpetrated but no death was

mentioned.

2.9. Beyond Human Requests
It was mentioned that since the genderAPI achieves high levels of

accuracy in predicting the gender of a person by their full name

string, we had been asked to have the Robokeyer provide gender

information even when there were no clear textual indications of

gender. We were likewise asked to have it pull out information

that is too costly to have humans do, such as identifying the

residences of the individuals in the stories, peoples’ occupations,

their organizational memberships, information about funerals, and

so forth.

 Yet there are two pieces of inferential information that are

hard for people to extract when not directly stated but which are

extremely important for localizing when. These are: (a)

establishing what a particular day of the week probably equates to

when it says “This person passed away on Thursday” given that

you know the obituary is being produced (for example) on 26

January 2015; and (b) determining what city an event took place in

when it says “This person passed away at Mountain View

Hospital” when the newspaper is the Salt Lake Tribune. To do

this kind of inference would significantly add to the human costs

of indexing, but it is fairly straightfoward for the Robokeyer.

 The first of these, determining what would be the likely

calendar date something occurred on given an anchoring date,

requires one to first coerce the full anchoring date into a Calendar

object. Then, the first instance of the unanchored date (eg.,

“Thursday”) prior to that anchored date is treated as the resolution

for the unanchored date. Concretely, if the day of newspaper

publication is 26 January 2015, we can determine using

calendaring that this means Tuesday, 26 January 2015. If a person

passed away “Thursday,” we recognize that the Thursday that is

closest before the anchoring date was five days previous; so we

would report that death occurred on 21 January 2015. A human

could likewise make this judgment, but doing the calendar math

would greatly increase the indexing cost.

 To determine an event’s city using only the hospital, facility,

or organization, we first identified thousands of structures that are

referenced in obituaries and we paired those with their associated

newspaper. For those places that repeated sufficiently often, we

painstakingly searched the Web to determine if we could identify a

single unique place by that name in the newspaper’s locality or in

the whole United States. For those facilities with unique names in

their particular newspaper or national localities, we stored the full

address. Our resolved data set was small, but it still consisted of

over 5000 location-anchored facilities. For instance, in the vicinity

of the Salt Lake Tribute, Mountain View Hospital is unique and it

is located in Payson, Utah.

3. Turning Pieces Into Indexes (Conversion)
The output of the entity, relation, and other taggers need to be

massaged and, in some cases, seriously manipulated in order to

actually produce a human-like index. When people do the

indexing of the obituaries, they are asked to identify the following

pieces of information:

 Type of record: Deceased or Other

 Given Names and Surnames for all unique individuals

 Titles/Terms for all individuals (eg., “Jr,” “Mr” “Mr”)

 Gender of the deceased

 Birth/Death day, month, and year of the deceased

 Birth/Death city, county, and state of deceased

 Age of the deceased

 Name of the newspaper

 Relationships of non-principals to the deceased.

 The Robokeyer needs to find these same pieces. When the

entity extractors have worked perfectly (which it often is but not

always), the identification of the people names is straightfoward –

so the key difficulties are to determine what the distinction is

between given names, surnames, and titles and tags AND to

determine when names are unique. The name chunker does a good

job at making the given/surname distinction in isolation, but as was

mentioned earlier, the converter needs to allow chunking to be

overridden when it appears in context. Something that was not

mentioned was that the converter also needs to be taught that when

names appear like “Robert and Mary (Brown) Jones,” then

Robert’s surname is “Jones.”

 To properly extract the birth and death facts, one of the two

following options need to happen. In both options, the entity

tagger needs to find the phrases that indicate places and date.

Additionally, in the first option, the entity tagger must also find a

phrase that is indicative of the event (eg., “died”, “returned to the

arms of his Father in Heaven”, “passed away,” etc.) , and then the

relation tagger must link the individual to the event and then link

the event to its associated date and place. In the second option, the

relation tagger must draw a direct connection with the person and

the relation “HAS_START_PLACE/ HAS_START_DATE” to

identify birth information; or “HAS_END_PLACE/

HAS_END_DATE” for death information. The first of these

options has been favored in the training data and the second is only

used when there is no anchoring event phrase. So for the most

part, three kinds of entities and three separate relations must be

discovered in order to find all the relevant pieces for each event.

 The next piece to identify, gender, has been spoken of earlier.

Specifically, if there are any textual information that gives clues

about gender, we use those clues. If not, we leverage direct

predictions of the genderAPI.

 Lastly, and often most difficult, we need to determine whether

the people involved are deceased or “other,” and if other, was is

the relationship to the deceased. Typically there is one word that

lets the obituary reader know the relationship between the

deceased and a whole list of individuals. In fact, it can even be the

case that no words are used to describe the relationship and that it

must be derived from the relationship mathematics that was

mentioned earlier. Many of the obituaries identify family relations

in a way similar to the following: “Bob Jones....is survived

by....his three sons, Rudolph (Ann), Rupert, Theodore (Susan),

Shelley, and Alfred (Jane), Burley.” As we saw before, if we can

determine that the sons are Rudolph, Theodore, and Alfred, then

using relational math, we can determine that Ann, Susan, and Jane

are daughters-in-law. Unfortunately, it is often the case that the

constructs of how the family members appeared makes it hard to

know who actually are the relatives. In the case of the sentence

fragment above, even a human might think that the sentence

should be telling us that Bob has two more sons, Rupert and

Burley, and a daughter named Shelley. But these three extra words

are really referring to towns in Idaho and the obituary writer is

telling us the residence places of the sons’ families. Given these

complexities, the determination of the relationship between the

family members and the deceased is non-trivial and has the highest

amount of error. Moreover, the associated people may also be

business partners, friends, church officials, etc., and in these cases,

the indexer is supposed to mark the connection to the principal

deceased as “non-relative.”

 Given the complexity of inferring the relationship, it is often

the case that the converter finds that there is insufficient

information to determine the relation. In many of these cases, the

converter makes an educated guess. To make this guess, we use

the statistics of the gender of the name string and the relationships

or suspected relationships of people before and after the unknown

relationship. For example, if the relative before the current

unknown one was a sister and the relationship afterward is not yet

determined, but the current person’s name is female, then there is

a 65% chance that the unknown relationship is actually “sister.”

We would indicate this rule by “Sister__?_F => Sister.” The

converter has almost 500 rules of this kind which do introduce

error but which yield the correct relationship more often than not.

 The last required scoreable field is that of AGE. The entity

tagger distinguishes between QUANTITY, DURATION, and

AGE. We use its AGE output to fill this field, though the

converter may have to converter a string like “sixteen-and-a-half

years old” into “16” as required by indexing guidelines. This

information tends to be fairly accurate. Moreover, if we have two

elements of the set {BIRTH DATE, AGE, DEATH DATE}, the

converter estimates the other missing piece of information.

 The name of the newspaper is another desired piece of

information for indexing, but since there are external metadata that

are available that can be used to supply this information, it is not

absolutely required. Nevertheless, the Robokeyer has an entity

class ORGANIZATION.pub which identifies publications and we

mine the results in order to provide the publication name. This

entity class typically fires in the header portion of the raw XML

obituary text to identify the name of the newspaper and its

location.

 When the Robokeyer is being scored, it is only compared to

the human-extracted information we have mentioned in this section

so far. Yet the Robokeyer also pulls out other relevant information

about residences of individuals, burials, marriages, information

about the funeral, occupations, and organizational affiliations. Its

quality for extracting this information is unknown since there are

no gold standard results with which to make comparison.

4. Evaluating Performance
We evaluate the Robokeyer by comparing its output to indexes

created by humans on the same obituaries. Humans of course

make errors, so at some points, our system will get penalized for

correct results. Nonetheless, this strategy provides us with a

reasonable estimate of the system’s performance and it points us to

places where there are problematic outcomes. We will here

describe the data sets upon which we evaluate, and we will show

the actual way we count human versus machine disagreements.

4.1. Corpora types
We evaluate the Robokeyer on three different data sets. The first

of these, which we will call Short Septuple, is a 4K data set of

mostly short obituaries. The data set was vetted seven times by

humans – so results thereon can be taken as highly likely to be

accurate. The second set, which we will call MediumObits, is

probably most representative of the typical obituary collection in

that it contains 600K average-sized obituaries that were triply

indexed by humans. The last set, the LargeObits, is a set of 880K

obits which tend to be medium to large in size and which represent

samples from all 50 states and which was also triply indexed.

4.2 Evaluation Strategies
To score the Robokeyer, we compute the average per-field F-score.

Suppose there are 30 extractable fields in an obituary and that the

Robokeyer correctly finds 25 of these, fails to find 2 of them,

inserts incorrect information into 3 others, and produces spurious

results for 4 more. In this case, the precision would be given by

25/(25+3+4)=78.1%. The recall for this situation would be

25/(25+2+3)=83.3%. The F-score, which was declared to be the

harmonic mean of the precision and recall (or the product of the

these two numbers divided by the average of the two), would be

given to be 80.6%.

 There are some kinds of differences between hypothesized

results and “gold standards” that are mostly irrelevant in that either

they are unlikely to affect search findability or they are subjective.

We do not impose a penality for these types of variability in

scoring, which are:

 Ordering of Appearance of Names

Eg. Human says John, then Mary; but other indexer (human or

machine) shows Mary first followed by John. [Note that we

detect these swaps using the “Hungarian Algorithm”, [6].]

 Case Insensitivity

 Eg. Human says John E; but other indexer says John e

 Gendered Relations Agrees with genderAPI

Eg. Human says the relationship is “Child”; but other indexer

says “Son” and genderAPI says the person is a male.

 Period-stripping

Eg. Human says “Mr” but other indexer indicates it as “Mr.”

 Spacing Variations

Eg. Human says “Jan VanSanten” and other indexer reports

“Jan Van Santen.”

 GN/SN Boundaries

Eg. Human says that the name “Michelle Fredrickson Smith”

should be broken up into given/surname pieces as Michelle

Fredrickson /Smith/ but the other indexer breaks it up as

Michelle /Fredrickson Smith/.

 Common Name Swaps

Eg. Human reports a place name as “AZ” but the other indexer

reports it as “Arizona.”

There is also a situation where partial credit might be afforded

even when there are differences between the human result and the

other indexer. This is:

 Handling “OR” names

Eg. When human says the person’s given name is “James or

Jim” and the machine reports only “James,” then scoring gives

F-score-based credit to machine (“James” is 100% precise, but

since only one of the two name variants is provided, “James” is

only 50% of the recall ... yielding 66.6% F-score which

percentage is also used as the partial credit).

 We refer to the method of scoring which permits the above

variations as “Level-8” normalization. One could easily argue that

two indexes that differ only on these points are virtually the same

for all intents and purposes. Level-8 scoring is our primary

method for evaluating the machine against the human indexes.

 We also consider a “Level-10” normalization where non-key

fields are dropped (such as the death day and month) and where

FamilySearch’s naming authority tables are used to identify name

variants like “Johnny” and “John;” so if one indexer says the first

and the other indexer says the second, this difference could be

potentially overlooked. This method of scoring shows the

searchability differences between the two indexes.

4.3. Performance Results
Given the described method of scoring and the strategy for

handling close variations, we can now show the Robokeyer’s

performance on each of the three test collections mentioned in

Section 4.1. We will first show the raw results of the system as it

is applied to ALL obituaries and then as it is applied to only those

obituaries which the confidence predictor has surmised are

sufficiently “sweet” (where the accuracy threshold is estimated to

be at least 75% per-field F-Score).

4.3.1. Raw Results
Table 2 shows the per-field F-scores of the raw Robokeyer with no

“sweetening.” The column of “Medium Obits” is probably most

representative of new collections since most should tend to be of

medium size, and the “Level-8” scoring is probably most similar to

the perception of accuracy that a human might place on the results.

In that collection, there are an average of 8 people who are

mentioned in each obituary.

 Table 2: Robokeying Per-Field F-Scores On Each Test Set

Scoring

Paradigm

Short Septuple

(143.4K fields)

MediumObits

(10.9M fields)

LargeObits

(44.9M fields)

Level-8 95.10% 94.09% 90.97%

Level-10 95.86% 94.74% 91.69%

 Note that for Level-8 on the unfiltered MediumObit

collection, we are getting 94.09% F-score on average per field. As

was mentioned, this set has 600K obituaries which represent

10.9M fields, or about 18.1 fields/obituary. Since we have 18

fields and, on average 5.91% deletion and insertion error per field,

we should on average expect to see 1.06 precision error and 1.06

recall error in almost every obituary.

 We can get a better understanding of these results if we look

at them pictographically. In Figures 3 and 4 we illustrate

histograms for the Medium and Large Obituary sets. The X axis in

the plots represents that averaged per-field F-scores of 100-

obituary blocks of data; and the Y-axis is the log-2 scaling of the

frequency (i.e., 1, 2, 4, 8, 16, etc) of blocks that share the same F-

score. Figure 3 shows the histogram of the MediumObits

collection and Figure 4 shows it for the LargeObits.

Figure 3: Log-Scaled Histogram of Averaged F-scores of 100-obit

blocks from MediumObits

Figure 4: Log-Scaled Histogram of Averaged F-scores of 100-obit

blocks from LargeObits

We can see from the figures that the modes for both Figure 3 and

Figure 4 are very close to the performance numbers reported in

Table 2. Yet it is also clear that there are long tails to each of these

distributions. In Figure 2, for example, we see that are two 100-

obit blocks which have averaged F-scores of only 72% -- a very

low score for so many obituaries. In Figure 3, we see likewise that

there is a 100-obit block with averaged F-scores in the low 60s.

Fortunately, as we see in the next section, confidence-based

filtering helps reduce some of these long tails.

4.3.2. Results with Automatic Confidence Judgments
As was mentioned earlier, we had built a machine learning process

to automatically attempt to determine when the Robokeyer was

likely to have done a reasonable or poor job at indexing. Of

course, this system cannot be flawless, but there are definitely

clues that can be exploited for making predictions. For example,

we have some colleagues who evaluated Robokeyer results and

determined that if there are more than a certain number of children

in the obituary, or too many wives, or too many principals, the

obituary is likely to have been auto-indexed poorly. We provided

these and many other properties to a maximum-entropy-based

machine learner that was trained using a small fraction of the test

data and allowed it to try to determine when it was likely to have

failed. Of course, the use of some of the testing material for

building this machine learner has the potential of obscuring its true

value or lack thereof, but we assumed we would be able to have a

good sense of its helpfulness based on what it did on the test set as

a whole. In Table 3, we see that by throwing out all the elements

which were automatically predicted to be poorly indexed, we

achieved 1.1-1.8% absolute gains in F-score – a definite win! This

should mean that the average obituary for this major subset of

obituaries has dropped from having 1.06 precision and recall errors

to having 0.86 errors of each kind.

 Table 3: “Sweet” Robokeying Per-Field F-Scores On Test Sets

Scoring

Paradigm

Short Septuple

(137.0Kfields)

Medium Obits

(10.2M fields)

Large Obits

(39.5M fields)

Level-8 95.66% 95.24% 92.71%

Level-10 96.36% 95.84% 93.21%

If we again look at histograms of the higher=confidence results, we

see that much of the worst part of the tails have been removed.

Figure 5 shows the histogram using the MediumObits collection

and Figure 6 shows it with the LargeObits collection.

Figure 5: Log-Scaled Histogram of Averaged F-scores of 100-obit

blocks from MediumObits After Confidence Filtering

Figure 6: Log-Scaled Histogram of Averaged F-scores of 100-obit

blocks from LargeObits After Confidence Filtering

5. Scaling for Production
The test sets we used for Robokeying evaluation were large, so we

expected that the system should be about as equally applicable to

previously-unseen obituaries as it had been for these which had

already indexed by humans. FamilySearch had a collection of 48

million obituaries which it had intended to have indexed fully by

humans. Yet for every million obituaries that need to be indexed

even using the fastest human indexers (assuming 8 minutes of

work per obituary), 15.2 person-years are required (or about 65.5

person-career-years, assuming 2080 hours worked per year). Since

26.5 million obituaries had not been human indexed, these were all

run through the Robokeyer.

 The Robokeyer was run on a compute cluster with 145 two-

generation-old machines using three CPUs each. In about five

days, it was able to index the 26.5 million obituaries, run

confidence filtering, and identify that about 23.5 million of the

obituaries were likely to have sufficiently high quality for

publication. This means that the Robokeyer was able to index in

five days the same amount of data as would have taken 1539

career-years for a single human to index.

6. Addressing Errors: Future Work
The Robokeyer’s speed makes it appealing as a solution to born-

digital obituary indexing. Yet the system errors are something that

still need to be addressed in some alternative manner in order to

have perfectly clean indexes. As was mentioned, probably 50%-

60% of the errors that the system makes have to do with ascribing

the wrong family relationship to the non-principals of the obituary.

Another 20-30% of the “errors” have to do with name

interpretation (some of which are actually original indexer errors

as opposed to Robokeying one). These often occur because some

names appear in reversed form while others appear juxtaposed

with the event city (eg: SMITH – Richard Brown vs. OGDEN –

Richard Brown). Another reasonable fraction of the errors are

caused by failing to determine the correct number of principals. It

is reasonable to believe that with further work on the Robokeyer

and with clean up of the truth sets, these kinds of errors can be

removed. Yet even if not, many of these errors are not egregious.

 There are some errorful situations, though, which are either

comical or, in some cases, are potentially upsetting. We cannot

mention all that have been reported to us thus far, but we can site a

few.

6.1. Comical Character Errors
It was mentioned earlier that the entity tagger can identify works of

art. Yet characters from works of art have no specific markers

that identify them as such. Therefore, nothing precludes them

from being identified as people. We have since introduced a

relation into our system’s inventory of “is fictional,” but this

relation still has almost no training data to help reduce this kind of

error. Consequently, we have pulled out TV and comic strip

characters as if they were real people. For example, when the

creator of the Rocky and Bullwinkle cartoon died, his characters

were mentioned by name in the data. The Robokeyer indexed

these names as if they were real people. At the time of this

publication, these errors were still visible online [see, for example,

7, for “Bullwinkle J Moose”].

 Pop star Michael Jackson also died in recent years and his

obituary and/or stories of his death appeared in numerous

newspaper articles. In one of these stories, the character of his

song, “Billie Jean,” was reported as his sibling by an early version

of the Robokeyer, along with his true siblings Jackie, Tito,

Jermaine, and Marlon [see 8]. In fact, the Robokeyer actually did

a relatively poor job in indexing the rest of this death story. To

help remedy this for the future, we purposefully looked for and

tried to train the entity tagger and relation tagger for stories about

Michael Jackson and other famous people.

6.2. Error Severity as Perceived by System Users
Other kinds of errors have been reported by patrons which suggest

a certain amount of alarm. Since obituaries cover people within

the time frames of living memory, FamilySearch patrons may be

mentioned by name in obituaries. They have gotten

understandably upset when the system has mismarked their

particular family relation to a loved one (such as erroneously

calling the patron the spouse to a beloved grandparent). A few

patrons have asked questions on some obituaries like “Did a child

index this one?” and others have commented that the person who

did the indexing needs to “Get a clue!” Obviously, strategies for

rapidly improving Robokeyer errors is of interest. Current

thoughts are that we could create simple tools to allow specific

FamilySearch affiliates to fix the serious errors that have been

identified by the patrons.

7. Feasibility of Robokeying of Obituaries in
Newspaper Images
The potential success of the Robokeyer on born-digital obituaries

has led individuals to ask: Can the Robokeyer be applied to

obituaries that first appeared in the newspaper or “born paper?”

Naturally, a first step in Robokeying stories from actual newspaper

images is to convert those images into textual representations

through OCR. “OCR” or “Optical Character Recognition” is the

phrase that is usually used to indicate the automatic transcription of

images.

 OCR technologies exist commercially and many genealogical

companies use these commercial tools to gain textual access to

their own content. However, OCR companies have primarily

focused their attentions on the kinds of documents and print that

has appeared in the past two decades. Print over the last twenty

years is often fairly high quality and uses even inking with

consistent font sizes. Moreover, image scans from recent

newspaper clippings are typically very readable. Nonetheless,

newsprint of the deeper past had a number of issues which make

automatic transcription thereof much more difficult.

 We have therefore worked to develop our own historical

newsprint recognition system. In particular, we know that unless

we have word accuracies on obituaries that exceed at least 90%,

the resultant Robokeying results will be of little or no value to

patrons. This system is described in detail elsewhere (see [9]).

Yet suffice it to say that our system’s performance on pre-zoned

US newspaper snippets is fast approaching 90% and it has already

exceeded 90% on British newspapers. The key for Robokeying

success on these newspaper image snippets will be high quality

transcription of people and place names which often are exactly the

kinds of terms that OCR systems fail to transcribe well. We are

hopeful, though, that we will be able to achieve high-quality OCR

results and that Robokeying thereon will be a success.

8. Synopsis
We have here described our Robokeying system which has been

used to automatically index born-digital obituaries. We have

shown that we have been able to get the system to have reasonably

high accuracies at doing the same task that humans normally do,

but it can do this thousands of times faster than humans. This

speed has led us to apply this technology to tens of millions of

obituaries for publication which will become available to the

public in the early parts of 2016. Moreover, due to the potential

success of this technology, we have pushed for and made

significant strides in the development of OCR technology for

transcribing historical newsprint with plans to start Robokeying on

image-based obituaries by the end of 2016.

9. Acknowledgements
Although this paper has focused on the technological aspects of

robokeying, there have been many other components that have

been necessary in order for the Robokeyer to reach a state in which

its results could be deployed. These have included issues of

management negotiations, data acquisition, pre-publication

operations, external evaluations, and image processing work. The

authors wish express their thanks to Jon Morrey, Laura Giometta,

Mark Hamp, and Heather Walgren for management negotiations;

to Nate Emmer, Chris Whitehead, Rachael Day, Jeremy Schone,

Janae Dean, Melvin and Miriam Pethel, Roger and Marilyn Smith,

Kenneth Bailey, and Robin Davis for significant efforts to annotate

and/or acquire data for training and evaluating the Robokeyer; to

Tom Robbins, David Greenwood, and Matthew Larson for their

efforts to transform Robokeying results into productized data; to

Janet DiPastena, Scott Chatterton, and Daniel Williams for

independent evaluations of this technology; and to Alan

Cannaday, Seth Stewart, and Heath Nielson for their help in

transforming images into robokeying-enabled documents.

References
[1] K. Gale. “2014: The Year of the Obituaries,” at https://familysearch.

org/blog/en/2014-year-obituaries-2/, 2014

[2] R. Grisham, B. Sundheim. “Message Understanding Conference 6: A

Brief History”, COLING-96, 1996.

[3] A. K. McCallum. "MALLET: A Machine Learning for Language

Toolkit." http://mallet.cs.umass.edu. 2002.

[4] K. Kottmann, et al. “openNLP.” http://opennlp.apache.org/team.html,

accessed 27 Jan 2016.

[5] Google Trends. https://www.google.com/trends/topcharts#vm=cat&

geo=US&date=2015&cid, accessed 27 Jan 2016

https://familysearch/
http://opennlp.apache.org/team.html
https://www.google.com/trends/topcharts

[6] H. W. Kuhn, “The Hungarian Method for the Assignment Problem

and how Jacobi beat me by 100 Years”, Seminar, Concordia

University, September 12, 2006.

[7] FamilySearch, “Bullwinkle J Moose,” https://familysearch.org/ark:/

61903/1:1:QVTP-RL7H, accessed 29 Jan 2016.

[8] FamilySearch, “Billie Jean,” https://familysearch.org/ark:/61903/

1:1:QVT4-CZ82., accessed 29 Jan 2016

[9] P. Schone, A. Cannaday, S. Stewart, R. Day, J. Schone. “Automatic

Transcription of Historical Newsprint By Leveraging the Kaldi

Speech Recognition Toolkit,” DRR 2016, to appear.

https://familysearch.org/ark:/%2061903/1:1:QVTP-RL7H
https://familysearch.org/ark:/%2061903/1:1:QVTP-RL7H
https://familysearch.org/ark:/61903/

