
Efficient Binarization for
Historical Document Analysis

Florian Westphal, Håkan Grahn and Niklas Lavesson
Department of Computer Science and Engineering

Blekinge Institute of Technology
Karlskrona, Sweden

Email: {flw, hgr, nla}@bth.se

Abstract—Readability of document images is one core issue
when analysing historical documents. One way to improve the
readability of those document images is image binarization. By
separating the written text from its background, documents
degraded by, e.g., stains or faded ink become better readable.
Due to the large quantity of available historical document images,
this binarization needs to be done efficiently to make this form
of processing feasible.

In this paper, we present our work in progress on improving
the execution performance of a state-of-the-art binarization
algorithm by mapping it onto a heterogenous platform. We
describe how the algorithm can be divided and computed in
parallel on CPU and GPU. The preliminary results, which we
report in this paper, suggest that a speedup of 1.4 is possible in
comparison to the original algorithm.

I. INTRODUCTION

Historical handwritten documents have been photographed
and archived on micro film for several decades. More recently,
the possibility to digitize such documents has made them
available to a broader audience. Our partner ArkivDigital1, for
instance, provides genealogists with access to around 50 mil-
lion images of Swedish church records and other historical
documents. Despite the good image quality, images of old
documents are still hard to read, due to, e.g., faded ink, ink
bleeding through from the other side of the page, or stains.

One way to improve the readability of these documents is
to use image binarization. This technique separates the written
text in an image from its background by classifying pixels
of the image as foreground or background pixels, depending
on their characteristics in the image. The obtained binarized
image can then be used to overlay the original image to
improve its readability. Figure 1 illustrates an ideal case based
on ground truth data from the DIBCO 2013 dataset [1].

While binarization algorithms must clearly separate the
background and foreground of an image, they also have to
perform this binarization in a timely manner. This need is
derived from the vast amount of available images, which
should be visually enhanced. In our case, we are looking at
50 million high resolution images. If the processing of one
image takes only 30 seconds, then processing all images would
take up to 48 years. Therefore, it is vital to use binarization
algorithms, which produce good binarization results fast. The
required speedup of these algorithms can be achieved by

1http://www.arkivdigital.net

(a) Original Image (b) Binarized Image

(c) Merged Image
Fig. 1: Improved Readability through Binarization

efficiently using the possibilities for parallel computation pro-
vided by heterogeneous platforms, which are widely available
nowadays. A heterogeneous platform, is simply a system
combining different processor types [2]. Those processor types
are normally multicore central processing units (CPUs), in-
tegrated graphics processors (IGPs), and graphics processing
units (GPUs).

In our work, we explore how a large number of document
images can be binarized in a timely manner, to make it feasible
to process all of ArkivDigital’s images. To achieve this goal,
we propose a processing pipeline in which image preprocess-
ing is handled by the CPU, while the actual binarization is per-
formed by the GPU. In this way, we utilize the heterogeneous
platform to speed up Howe’s binarization algorithm [3]. This
processing pipeline distinguishes our approach from previous
work, which used only the GPU to speed up binarization and
considered only the binarization of one image.

In the following, we introduce Howe’s binarization algo-
rithm, as well as challenges of algorithm development for
a heterogeneous platform in Section II. Section III describes
other approaches, which attempt to speed up image binariza-
tion and identifies the difference between those approaches and
our binarization pipeline. We describe our approach in more
detail in Section IV and Section V states our experimental
design. We present our preliminary results in Section VI and
conclude this paper in Section VII.

http://www.arkivdigital.net

II. BACKGROUND

In this section, we introduce image binarization in general
and describe Howe’s binarization algorithm, on which our
approach is based. Additionally, we describe the challenges
of mapping such an algorithm to a heterogeneous platform
and motivate why the use of multiple computing devices does
not guaranty faster execution.

A. Image Binarization

Image binarization is the process of classifying image pixels
as foreground or background pixels. For images of handwritten
documents, this means to separate the written text from its
background. This is especially challenging when dealing with
images of historical documents, which can be degraded by,
for instance, faded ink, stains covering the written text, or
ink bleeding through from the other side of the page. A
binarization algorithm for historical documents has to be able
to cope with these degradations, which increase the risk that
foreground pixels are accidentally classified as background
pixels or vice versa.

Binarization algorithms by Otsu [4], Niblack [5], and
Sauvola et al. [6] are well known. These algorithms are com-
monly used as baseline for comparison with new algorithms,
for instance, in competitions, such as the Document Image
Binarization Contest (DIBCO) held at the International Con-
ference on Document Analysis and Recognition (ICDAR) [7],
[1] or the Competition on Handwritten Document Image
Binarization (H-DIBCO) held at the International Conference
on Frontiers in Handwriting Recognition (ICFHR) [8], [9].
The winner of the latest binarization contest in 2014 [9] was
a combination of the algorithms by Howe [10] and Mesquita
et al. [11]. Since the difference in binarization quality between
Howe’s algorithm and the winning binarization algorithm was
small, but the winning algorithm was reported to require a
substantial amount of time more, we decided to work with
Howe’s binarization algorithm instead.

Howe’s binarization algorithm labels image pixels as fore-
ground or background pixels by minimizing a global energy
function. This function penalizes labelings that do not conform
with the image’s Laplacian, that is, it penalizes pixels in
intensity valleys (ink), which are classified as background
and pixels in intensity plateau or peak areas (background),
which are classified as foreground. Additionally to this simple
separation based on the divergence of the gradient, the energy
function penalizes labelling discontinuities, unless they take
place at an edge, as detected by the Canny edge detection
algorithm [12]. This addition improves the stability of the bina-
rization algorithm and encourages the continuity of foreground
and background areas.

B. Heterogeneous Computing

As stated before, heterogeneous computing uses different
processor types simultaneously to improve the execution speed
of an algorithm. One simple way to achieve this is to distribute
different parts of the algorithm to different processors. This
allows two levels of parallelism, namely the parallel execution

of those different parts on different processors and on the
other hand the parallel execution of each of these parts on
its respective processor.

Despite this good potential for increasing the execution
speed, mapping an algorithm onto a heterogeneous platform
entails many challenges. One of these challenges is mem-
ory management. While CPU and IGP usually both use the
computer’s main memory, the GPU possesses its own, smaller
memory space. Moving data between those different memory
spaces inflicts high performance penalties. If not considered
carefully, this performance loss can outweigh the speedup
gained by parallel execution. Another challenge is the diversity
of execution models of the different processor types. This
diversity makes it necessary to carefully select and optimize
algorithms depending on which processor is executing them.
Apart from these challenges, the code execution on different
processor types has to be coordinated. One way to do this
is to use the OpenCL standard [13]. This standard defines
a unified programming interface, which allows it to program
and coordinate the execution of programs on many different
processor types.

III. RELATED WORK

Most studies on image binarization focus on the quality
of their binarization result without considering the required
execution time. One typical example for this is the work by
Nina et al. [14]. However, there are studies, such as the one
by Soua et al. [15], which use the GPU to speed up image
binarization. In contrast to these studies, we use the GPU and
the CPU of a heterogeneous system to speed up binarization
and focus on the processing of large numbers of images.

IV. BINARIZATION PIPELINE

Section IV-A describes how we split Howe’s binarization
algorithm into smaller parts to be executed on different pro-
cessor types. Their distribution and the pipelined processing
of images is described in Section IV-B.

A. Algorithm Decomposition

Howe’s binarization algorithm can be divided into three
main steps. These steps are 1.) Laplacian computation,
2.) Canny edge image computation, and 3.) energy minimiza-
tion, as shown in Figure 2. For our binarization pipeline, we
divide the binarization algorithm into these three different
parts. This is a reasonable separation, since any of these
three steps can be computed independently, provided that the
initially required data is available. Additionally, the amount
of data that needs to be transferred between different memory
spaces is reasonably small in this setting, since only the
grayscale image, the Laplacian image, the Canny edge image,
and the binarized image have to be exchanged.

B. Algorithm Mapping

This separation makes it possible to execute different parts
of the algorithm on either CPU or GPU. Table I shows for the
3 different steps how they could be mapped onto CPU and

Fig. 2: Decomposition of Howe’s Binarization Algorithm

GPU. In our work, we evaluate which of these 8 combinations
produces the fastest binarization result.

TABLE I: Mapping of Algorithm Parts to CPU and GPU
I II III IV V VI VII VIII

1 CPU GPU CPU GPU CPU GPU CPU GPU
2 CPU CPU GPU GPU CPU CPU GPU GPU
3 CPU CPU CPU CPU GPU GPU GPU GPU

As stated before, the algorithms used to compute each of
these three steps have to be chosen carefully, based on the
processor type on which they are executed. The best example
for this is the energy minimization step. In his paper, Howe
uses Boykov and Kolmogorov’s graph cut algorithm [16] to
perform the minimization of the energy function [3]. While
this is an efficient algorithm when executed on a CPU, it is
not suitable for execution on a GPU due to its global tree
data structure. A graph cut algorithm, which is more suitable
for execution on a GPU is the JF-cut algorithm by Peng et
al. [17]. This algorithm is based on a push-relabel approach,
which allows parallel local updates, in contrast to sequential
updates to a global data structure, making it therefore more
suitable for the GPU. For this reason, we are using in our
implementation these two different algorithms for CPU and
GPU.

Apart from the suitability of different processor types for
different tasks and the selection of suitable algorithms for the
different processor types, the simultaneous use of different
processor types yields another optimization possibility. Fig-
ure 2 shows that the first two steps of the algorithm only
require the grayscale image, while the energy minimization
can be executed only after these two steps. This allows
the computation of the next image’s Laplacian and Canny
edge image concurrently with the previous image’s energy
minimization. Thus, a batch of images can be binarized in
a pipeline, where the next image is preprocessed, while the
previous image is still binarized. This reduces the computation

time by overlapping the computations.

V. EXPERIMENT DESIGN

This section describes our experiment design together with
the different measurement objectives. Section V-A describes
the platform on which our experiments were conducted, as
well as the used datasets. The measures used to assess the
binarization performance are described in Section V-B and
the measurement of the execution performance is described in
Section V-C.

A. Experiment Setup

All experiments were performed on a laptop with a 2,8 GHz
Intel Core i7 CPU, 16 GB of main memory, and an NVIDIA
GeForce GT 750M GPU with 2048 MB of RAM. OpenCL 1.2
on OS X was used to coordinate the execution of the bina-
rization algorithm on CPU and GPU. For the experiments,
we used our OpenCL implementation of Howe’s binarization
algorithm, as well as his reference implementation, which was
written in MATLAB.

As test dataset, we used the images from the 2014 competi-
tion on handwritten document image binarization (H-DIBCO
2014) [9], as well as one randomly chosen high resolution im-
age from ArkivDigital. While the sizes of the 10 competition
images range from 775 × 460 pixels to 2675 × 1255 pixels,
the ArkivDigital image has a size of 5184× 3456 pixels.

B. Binarization Performance Measurement

In order to assess the binarization quality of the 8 analysed
combinations, we compare the binarization results obtained
using these combinations with the ground truth data. We
use two different measures, the pseudo F-Measure (Fps) and
the Distance Reciprocal Distortion Metric (DRD), for this
comparison. Those measures were used before to evaluate
the binarization performance in different binarization compe-
titions [1], [9]. In contrast to other measures, these measures
weight misclassified pixels based on their location in the image
to give a more realistic view on binarization quality from a
human perspective. While it is desirable to achieve a high Fps

value, a lower DRD value indicates a better binarization result.

C. Execution Performance Measurement

For each combination, we measure the time to perform
the binarization, excluding the time for loading and storing
an image. This time measurement is consecutively repeated
four times of which the first measurement is discarded to
ensure equal measurement conditions. The remaining three
measurements are used to compute the average execution time
for the particular combination and image.

Additionally to measuring the time it takes to binarize
one image, we also measure how much time it takes to
compute each of the three steps. As for the total times, these
measurements are repeated four times of which only the last
three are used to compute the average time taken for each step.

VI. PRELIMINARY RESULTS AND ANALYSIS

By performing the experiments as described in the previ-
ous section, we obtained the preliminary results, which are
reported in this section. The binarization performance of all 8
combinations is discussed in Section VI-A and the measured
execution times are reported in Section VI-B.

A. Binarization Performance

As described before, the binarization performance is eval-
uated based on Fps and DRD. Figure 3 shows the box plots
for the average Fps and DRD over all H-DIBCO 2014 images
for each combination. Here, the different combinations were
separated based on which processor type executed the energy
minimization, since it was clear from the obtained results that
the used energy minimization algorithm influenced the bina-
rization quality strongly. The box plots with the label ”**C”
display the binarization performance of the combinations using
the CPU for the energy minimization, while ”**G” identifies
the binarization performances of combinations using the GPU
for the minimization step. The black lines mark the obtained
binarization results using the reference implementation.

 75

 80

 85

 90

 95

 100

**C **G **C **G

 2

 4

 6

 8

 10

 12

Ps
eu

do
 F

-M
ea

su
re

 in
 %

D
R

D

Fig. 3: Binarization Performance Separated by Processor Type
for Energy Minimization

From Figure 3, one can see that the reference implemen-
tation performs clearly better than our implementation. Apart
from that, the figure shows that our implementation does not
produce consistent binarization results for all combinations.
This is problematic, since the ideal case would be that all
combinations yield the same binarization results, but differ in
execution performance.

One possible reason for the inconsistent binarization results
between combinations using the CPU for energy minimization
and those using the GPU might be that sub optimal algorithm
parameters were chosen for both groups. Apart from that,
the difference between the reference implementation and the
combinations using the CPU for energy minimization suggests
that the preprocessing is not handled in an optimal way. This
is the case, since the reference implementation uses the same
implementation of Boykov and Kolmogorov’s graph cut algo-
rithm as the CPU energy minimization in our implementation.

B. Execution Performance

Figure 4 shows the accumulated time to binarize all images
in the H-DIBCO 2014 dataset for each of the 8 combinations.
From this figure, one can see that all combinations, except I
and III, execute faster than the reference implementation, with
combination VIII being the fastest. However, when binarizing
the high resolution image, all combinations using the CPU
for the energy minimization execute slower than the reference
implementation, while the other four combinations perform
faster. For this image, combination VI performs best, as shown
in Figure 5.

 5

 6

 7

 8

 9

 10

 11

I (CCC)

II (GCC)

III (CGC)

IV (GGC)

V (CCG)

VI (GCG)

VII (CGG)

VIII (GGG)

Ti
m

e
in

 S
ec

on
ds

Own
Reference

Fig. 4: Execution Performance of Each Combination for all
H-DIBCO 2014 Images

 10

 15

 20

 25

 30

 35

 40

I (CCC)

II (GCC)

III (CGC)

IV (GGC)

V (CCG)

VI (GCG)

VII (CGG)

VIII (GGG)

Ti
m

e
in

 S
ec

on
ds

Own
Reference

Fig. 5: Execution Performance of Each Combination for the
High Resolution Image

Apart from increasing the execution performance by se-
lecting efficient algorithms for the respective processor type
and mapping the three steps, Laplacian, Canny, and energy
minimization, to their most suitable processor type, one can
also take advantage of the fact that different parts of the
algorithm can be executed at the same time on different
processor types. From Table II, it is apparent that a pipelined
execution could speed up the binarization of an image by 0.5
seconds. This is the case, since the preprocessing on the CPU
could be handled while the previous image is still binarized

by the GPU. Therefore, the preprocessing steps would be
already done when the GPU finishes with the binarization of
the previous image and could directly move on to binarizing
the next image. This could save 0.5 seconds compared to when
preprocessing and energy minimization are executed on the
GPU.

TABLE II: Separate Execution Times for the High Resolution
Image

1 2 3

CPU 2.27 s 0.17 s 28.76 s
GPU 0.39 s 0.11 s 14.54 s

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented our general idea on how to
reduce the execution time of a state-of-the-art algorithm, such
as Howe’s binarization algorithm with help of heterogeneous
computing. We have described how this algorithm can be
divided and mapped to a heterogeneous platform and how the
possibility of parallel execution between CPU and GPU can
be used to increase the binarization speed of large amounts of
images by processing images in a pipelined fashion.

Additionally, we have presented our preliminary results,
which show that the energy minimization is the most compute
intense step and that the execution speed of this step can be
improved by performing it on the GPU using JF-cut as graph
cut algorithm. However, the analysis of the binarization quality
has shown that the binarization performance is worse in those
combinations, which use the GPU for energy minimization.
Therefore, further investigation is required to understand the
reasons for this reduced binarization performance. Possible
reasons might be erroneous preprocessing or sub optimally
chosen algorithm parameters.

Another issue requiring further investigation is the proposed
binarization pipeline. While our preliminary results suggest
that the expected speedup will be small, it would still be
interesting to follow this idea further.

VIII. ACKNOWLEDGEMENTS

This work is part of the research project ”Scalable resource-
efficient systems for big data analytics” funded by the Knowl-
edge Foundation (grant: 20140032) in Sweden.

REFERENCES

[1] I. Pratikakis, B. Gatos, and K. Ntirogiannis, “ICDAR 2013 Document
Image Binarization Contest (DIBCO 2013),” in 2013 12th International
Conference on Document Analysis and Recognition (ICDAR). IEEE,
2013, pp. 1471–1476.

[2] D. A. Patterson and J. L. Hennessy, Computer organization and design.
Morgan Kaufmann, 2013, ch. C, p. 3.

[3] N. R. Howe, “A Laplacian Energy for Document Binarization,” in
2011 International Conference on Document Analysis and Recognition
(ICDAR). IEEE, 2011, pp. 6–10.

[4] N. Otsu, “A Threshold Selection Method from Gray-Level Histograms,”
Automatica, vol. 11, no. 285-296, pp. 23–27, 1979.

[5] W. Niblack, An Introduction to Digital Image Processing. Prentice-Hall,
Englewood Cliffs, 1986, pp. 115–116.

[6] J. Sauvola and M. Pietikäinen, “Adaptive document image binarization,”
Pattern recognition, vol. 33, no. 2, pp. 225–236, 2000.

[7] B. Gatos, K. Ntirogiannis, and I. Pratikakis, “DIBCO 2009: document
image binarization contest,” International Journal on Document Analysis
and Recognition (IJDAR), vol. 14, no. 1, pp. 35–44, 2011.

[8] I. Pratikakis, B. Gatos, and K. Ntirogiannis, “ICFHR 2012 competition
on handwritten document image binarization (H-DIBCO 2012),” in
2012 International Conference on Frontiers in Handwriting Recognition
(ICFHR). IEEE, 2012, pp. 817–822.

[9] K. Ntirogiannis, B. Gatos, and I. Pratikakis, “ICFHR2014 Competition
on Handwritten Document Image Binarization (H-DIBCO 2014),” in
2014 14th International Conference on Frontiers in Handwriting Recog-
nition (ICFHR). IEEE, 2014, pp. 809–813.

[10] N. R. Howe, “Document binarization with automatic parameter tuning,”
International Journal on Document Analysis and Recognition (IJDAR),
vol. 16, no. 3, pp. 247–258, 2013.

[11] R. G. Mesquita, C. A. Mello, and L. Almeida, “A new thresholding
algorithm for document images based on the perception of objects by
distance,” Integrated Computer-Aided Engineering, vol. 21, no. 2, pp.
133–146, 2014.

[12] J. Canny, “A Computational Approach to Edge Detection,” IEEE Trans.
on Pattern Analysis and Machine Intelligence, no. 6, pp. 679–698, 1986.

[13] J. E. Stone, D. Gohara, and G. Shi, “OpenCL: A Parallel Programming
Standard for Heterogeneous Computing Systems,” Computing in science
& engineering, vol. 12, no. 1-3, pp. 66–73, 2010.

[14] O. Nina, B. Morse, and W. Barrett, “A Recursive Otsu Thresholding
Method for Scanned Document Binarization,” in Workshop on Applica-
tions of Computer Vision (WACV). IEEE, 2011, pp. 307–314.

[15] M. Soua, R. Kachouri, and M. Akil, “GPU parallel implementation of
the new hybrid binarization based on Kmeans method (HBK),” Journal
of Real-Time Image Processing, pp. 1–15, 2014.

[16] Y. Boykov and V. Kolmogorov, “An Experimental Comparison of Min-
Cut/Max-Flow Algorithms for Energy Minimization in Vision,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 26,
no. 9, pp. 1124–1137, 2004.

[17] Y. Peng, L. Chen, F.-X. Ou-Yang, W. Chen, and J.-H. Yong, “JF-Cut: A
Parallel Graph Cut Approach for Large-Scale Image and Video,” IEEE
Trans. on Image Processing, vol. 24, no. 2, pp. 655–666, 2015.

	Introduction
	Background
	Image Binarization
	Heterogeneous Computing

	Related Work
	Binarization Pipeline
	Algorithm Decomposition
	Algorithm Mapping

	Experiment Design
	Experiment Setup
	Binarization Performance Measurement
	Execution Performance Measurement

	Preliminary Results and Analysis
	Binarization Performance
	Execution Performance

	Conclusions and Future Work
	Acknowledgements
	References

