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Optical Character Recognition (OCR)

e optical character recognition (OCR): given an image, give the letter
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OCR with ANNs
Artificial Neural Networks (ANNs)

e Powerful adaptive machine learning models
e Trained for OCR to recognize images as letters

e 98%- accuracy
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Problem: Varying Noise

The amount of noise in a given image can vary for the same letter

Yields two domains, noisy and clean.
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Varying Noise: Common Solution

e Train one ANN (AN N,yizeq) on clean and noisy images mixed

e Problem: Noisy regions in the domain are more difficult to approximate

— ANNSs will learn the easier, clean images first.
— Then will continue training to learn the noisy regions
— The ANN can overfit the clean domain, lowering overall accuracy
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Domain Experts

e The Domain Experts:

— AN N_jeqn trains on / recognizes clean images
— AN N,isy trains on / recognizes noisy images

e Separates clean and noisy training, so no overfit to clean images.

e Problem: Choosing the right ANN given a new letter.

Solutions*:

— Train a separate ANN to distinguish clean from noisy letters.
— Use both ANNs and choose the one with the most confidence.

*Difficult to do in practice
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The Oracle Learning Process

Originally used to create reduced sized ANNs.

1. Obtain the Oracle: Large
2. Label the Data

3. Train the Oracle-Trained Network (OTN): Small
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The Oracle Learning Process

Obtain the most accurate ANN regardless of size.

ANNlarge

1
Training Data
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The Oracle Learning Process

Use the trained oracle to relabel the training data with its own outputs.
Relabeled Training Data

|
ANNlarge

I
Training Data
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The Oracle Learning Process

Use the relabeled training set to train a simpler ANN.

Oracle Outputs = New Targets

T
ANNsmall

Oracle-labeled Training Data
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Domain Expert Approximation Through Oracle Learning:
Bestnets

e \We introduce the bestnets method.

e Use Oracle learning [7] to train an ANN to approximate the behavior of:

— AN N_jeqn On clean images
— AN Npisy ON NOisy images

e Successfull approximation gives AN Nyesinets:

— The accuracy of AN N jean On clean images
— The accuracy of ANN,,is, ON noisy images
— An implicit ability to distinguish between clean and noisy
— No fear of overfitting. Overfitting the oracles is desirable.
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Prior Work

e Approximation

— Menke et al. [7, 6]: Oracle Learning

— Domingos [5]: Approximated a bagging [1] ensemble with decision
trees [8]

— Zeng and Martinez [9] approximated a bagging ensemble with an ANN

— Craven and Shavlik approximated an ANN with rules [3] and trees [4]

— Bestnets approximates domain experts (novel)

e Varying Noise: Mostly unrelated work.

— Assume one type of noise OR

— Vary the noise but train / test each separately OR

— Assume knowledge about the type of noise (SNR, etc.)
— Not always realistic
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Bestnets Method for OCR

Three steps:

1. Obtain the Oracles. In this case two oracles:
e Find the best ANN for clean only images (AN N¢jean)
e Find the best ANN for noisy only images (AN Nyisy)
2. Relabel the images with the oracles
e Relabelel clean images with AN N_jeqn'S outputs

o Relabelel noisy images with AN N,,,;s,'s outputs

3. Train a single ANN (AN Npestners) with the relabeled images
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Note About Output Targets

The OCR ANNSs have an output for every letter we'd like to recognize.
Given an image, the output corresponding to the correct letter should have

a higher value than the other outputs. These values range between 0 and
1.

To train an ANN to do this every incorrect output is trained to output
0 and the correct one 1.

With Oracle Learning, instead of training to 0-1, the OTN trains to
output what its oracles output instead, always more relaxed (greater than 0
or less than 1).

May be an easier to learn according to Caruana [2].
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Bestnets Process

Train the domain experts.

ANNnoisy
T

ANNclean
T

Noisy Training Images

Clean Training Images
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Bestnets Process

Use the trained experts to relabel the training data with their own outputs.

Relabeled Noisy Images

Relabeled Clean Images

I
ANNnoisy

1

Noisy Training Images

1
ANNclea,n

|

Clean Training Images
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Bestnets Process

Use the relabeled training set to train a single ANN on the oracles’ outputs.

Expert Outputs = New Targets

T
ANNbestnets

Relabeled Clean and Noisy Training Images
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Example: Original Training Image

Image

Target
All 0's except for the output corresponding to R which is 1
Domain

Noisy
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Example: Getting the Oracle’s Outputs

l

ANNnoisy

|
<0.2,0.3,0.13,..., R = 0.77,...,0.44 >
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Example: Resulting Training Image

Image

Target
<0.2,0.3,0.13,..., R =0.77,...,0.44 >
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Experiment

1. Train AN N¢jeqn on only the clean images
2. Train AN N5y on only the noisy images
3. Relabel the clean letter set’s output targets with AN N jeqn'S Outputs
4. Relabel the noisy letter set’'s output targets with ANN,,;s,'s outputs

5. Train a single ANN (AN Npestnets) on the relabeled images from both
sets

6. Train standard AN N, ;zcq On both clean and noisy with standard 0-1
targets
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Initial Results

ANN1 ANN2 Data set | Difference | p-value
AN N_jean ANNized Clean 0.0307 < 0.0001
AN Npoisy ANN,ized Noisy 0.0092 < 0.0001

AN Npesinets | AN Npized Mixed 0.0056 < 0.0001
ANN_gican | AN Npestnets Clean 0.0298 < 0.0001
AN Npoisy | AN Npestnets Noisy -0.0011 0.1607

p-values from a McNemar test comparing the two classifiers in each row
on a test set.
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Conclusion and Future Work

e Conclusion:
The bestnets-trained ANN:
— Improves over standard (mixed) training
— Retains the performance of AN N, sy
e Future Work

— Increase the improvement focusing on clean
— Investigate why it works (Caruana [2], may be easier to learn)
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