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CPU vs. GPU Architecture

CPU

• General purpose 

processors

• Optimized for 

instruction level 

parallelism

• A few large processors 

capable of multi-

threading

GPU

• Special purpose 

processors

• Optimized for data level 

parallelism

• Many smaller 

processors executing 

single instructions on 

multiple data (SIMD)
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High Performance GPU Computing

• GPUs are getting faster more quickly 

than CPUs

• Being used in industry for weather 

simulation, medical imaging, 

computational finance, etc.

• Amazon is now offering access to Tesla 

GPUs as a service
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Using GPUs as general 

purpose parallel 

processors

http://gpgpu.org

http://gpgpu.org/


Marketing from NVIDIA

• “World’s Fastest 1U Server”

“Compared to typical quad-core CPUs, Tesla 20 
series computing systems deliver equivalent 
performance at 1/10th the cost and 1/20th the 
power consumption.”

• “Personal Supercomputer”

“250x the computing performance of a standard 
workstation” 

• Dell is now selling a 3U rack mount unit capable 
of holding 16 GPUs connected to 8 servers 

http://www.youtube.com/watch?v=KGoT7C8y5rQ


Computer Graphics vs.

Computer Vision

• Approximate inverses of each other:
– Computer graphics – converting “numbers into pictures”

– Computer vision – converting “pictures into numbers”

• GPUs have traditionally been used for computer 
graphics – (Ex. Graphics intensive computer games) 

• Recent research, hardware and software are using 
GPUs for computer vision (Ex. Using Graphics 
Devices in Reverse)

• GPUs generally work well when there is ample data-
level parallelism



Digital Processing Center (DPC)

• Collection of multiple servers in a data center used 
by FamilySearch to continuously process millions of 
images annually

• Computer Vision types of Image Processing 
performed include

– Automatic skew correction

– Automatic document cropping

– Image sharpening

– Image scaling (thumbnail creation)

– Encoding into other image formats

• CPU is current bottleneck (~12 sec/image)



Promising “Drop In” Technologies

CPU Technologies

• IPP (Intel Performance Primitives)
– Use DCT functions to accelerate JPEG 

compression

• OpenCV

• Kakadu for JPEG-2000 
encoding/decoding

GPU Technologies

• NPP (NVIDIA Performance 

Primitives)

– No license for SDK like Intel’s IPP

– Has DCT functions that could be used 

for JPEG compression

• Dec 2010 release of OpenCV has 

GPU module

• GPUCV

• Cuj2k (CUDA JPEG-2000)



IPP to NPP Conversion

• NVIDIA replicated API of Intel’s IPP, so 

implemented methods are fairly easy to use

• Learning curve about copying to/from GPU 

and allocating memory on GPU

• Didn’t have time yet to try other libraries or 

direct programming on GPU in CUDA

• Got cropping and sharpening operations 

implemented



Example – Convolution Filter

… [Create padded image]

… [Create Gaussian kernel]

// Allocate blurred image of appropriate size

Ipp8u* blurredImg = ippiMalloc_8u_C1(img.getWidth(), 

img.getHeight(),

&blurredImgStepSz);

// Perform the filter

ippiFilter32f_8u_C1R(paddedImgData, 

paddedImage.getStepSize(), blurredImg, 

blurredImgStepSz, imgSz, kernel, kernelSize, 

kernelAnchor);

// Declare a host object for an 8-bit grayscale image

npp::ImageCPU_8u_C1 hostSrc;

// Load grayscale image from disk

npp::loadImage(sFilename, hostSrc);

// Declare a device image and upload from host

npp::ImageNPP_8u_C1 deviceSrc(hostSrc);

… [Create padded image]

… [Create Gaussian kernel]

// Copy kernel to GPU

cudaMemcpy2D(deviceKernel, 12, hostKernel, 

kernelSize.width * sizeof(Npp32s), kernelSize.width

* sizeof(Npp32s), kernelSize.height, 

cudaMemcpyHostToDevice);

// Allocate blurred image of appropriate size (on GPU)       

npp::ImageNPP_8u_C1 deviceBlurredImg(imgSz.width, 

imgSz.height);

// Perform the filter

nppiFilter_8u_C1R(paddedImg.data(widthOffset, 

heightOffset), paddedImg.pitch(),  

deviceBlurredImg.data(), deviceBlurredImg.pitch(), 

imgSz, deviceKernel, kernelSize, kernelAnchor, 

divisor);

// Declare a host image for the result

npp::ImageCPU_8u_C1 

hostBlurredImage(deviceBlurredImg.size());

// Copy the device result data into it

deviceBlurredImg.copyTo(hostBlurredImg.data(), 

hostBlurredImg.pitch());



Performance Testing Methodology

• Test System
– Dual Quad Core Intel® Xeon® 2.83GHz E5440 CPUs (8 

cores total)

– 16 GB RAM

– Debian Linux operating system

– Single Tesla C1060 Compute Processor (240 processing 
cores total)

– PCI-Express x16 Gen2 slot

• Three representative grayscale images of increasing size
– Small image – 1726 x 1450 (2.5 megapixels)

– Average image – 4808 x 3940 (18.9 megapixels)

– Large image – 8966 x 6132 (55.0 megapixels)



Cropping

1. Compute a threshold value

2. Binarize the image based on the 

computed threshold

3. Compute a bounding box that encloses 

all pixels determined as part of the 

document



Good News 

Creating a binarized image is up 

to 16x faster on the GPU!

The larger the image, the more 

effective using the GPU is



Bad News 

Large portion of operation not 

yet optimized on the GPU

Result is only up to 14% faster 

than the CPU implementation



Amdahl’s Law

Speeding up 25% of 

an overall process by 

10x is less of an 

overall improvement 

than speeding up 75% 

of an overall process 

by 1.5x



Sharpening (Unsharp Mask)

1. Perform a Gaussian Blur on the source 
image

2. Take the difference of the blurred image 
from the original and multiply it by a 
specified amount

3. Add the image produced from the 
previous step and clamp any values back 
to the displayable range of [0,255]



Able to completely run 

sharpening operation on GPU

Blur operation so fast it wasn’t 

even a millisecond (infinite 

speedup )

6 – 7x faster for all image sizes 

over current library



Operations in tandem result in 

roughly 2x speed increase

Will want to minimize transfer 

time to/from GPU



Conclusions and Future Work

• Significant increase in performance by parallelizing 
image processing operations for execution on GPUs

• Relatively easy implementation, but dependent on 
maturing libraries and tools

• Need to implement entire set of DPC operations 
(including image encoding/decoding) on GPU to fully 
assess viability

• Need to assess actual throughput in production-like 
environments
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Other Potential Uses 

• Accelerated image processing on 

workstations directly at archives

• Ability to use more sophisticated (and 

time consuming) algorithms

• Improve computationally intensive 

portions of client applications (Ex. image 

audit)

• Probably more
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Thank You.
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