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CPU vs. GPU Architecture

CPU

• General purpose 

processors

• Optimized for 

instruction level 

parallelism

• A few large processors 

capable of multi-

threading

GPU

• Special purpose 

processors

• Optimized for data level 

parallelism

• Many smaller 

processors executing 

single instructions on 

multiple data (SIMD)
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High Performance GPU Computing

• GPUs are getting faster more quickly 

than CPUs

• Being used in industry for weather 

simulation, medical imaging, 

computational finance, etc.

• Amazon is now offering access to Tesla 

GPUs as a service
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Using GPUs as general 

purpose parallel 

processors

http://gpgpu.org

http://gpgpu.org/


Marketing from NVIDIA

• “World’s Fastest 1U Server”

“Compared to typical quad-core CPUs, Tesla 20 
series computing systems deliver equivalent 
performance at 1/10th the cost and 1/20th the 
power consumption.”

• “Personal Supercomputer”

“250x the computing performance of a standard 
workstation” 

• Dell is now selling a 3U rack mount unit capable 
of holding 16 GPUs connected to 8 servers 

http://www.youtube.com/watch?v=KGoT7C8y5rQ


Computer Graphics vs.

Computer Vision

• Approximate inverses of each other:
– Computer graphics – converting “numbers into pictures”

– Computer vision – converting “pictures into numbers”

• GPUs have traditionally been used for computer 
graphics – (Ex. Graphics intensive computer games) 

• Recent research, hardware and software are using 
GPUs for computer vision (Ex. Using Graphics 
Devices in Reverse)

• GPUs generally work well when there is ample data-
level parallelism



Digital Processing Center (DPC)

• Collection of multiple servers in a data center used 
by FamilySearch to continuously process millions of 
images annually

• Computer Vision types of Image Processing 
performed include

– Automatic skew correction

– Automatic document cropping

– Image sharpening

– Image scaling (thumbnail creation)

– Encoding into other image formats

• CPU is current bottleneck (~12 sec/image)



Promising “Drop In” Technologies

CPU Technologies

• IPP (Intel Performance Primitives)
– Use DCT functions to accelerate JPEG 

compression

• OpenCV

• Kakadu for JPEG-2000 
encoding/decoding

GPU Technologies

• NPP (NVIDIA Performance 

Primitives)

– No license for SDK like Intel’s IPP

– Has DCT functions that could be used 

for JPEG compression

• Dec 2010 release of OpenCV has 

GPU module

• GPUCV

• Cuj2k (CUDA JPEG-2000)



IPP to NPP Conversion

• NVIDIA replicated API of Intel’s IPP, so 

implemented methods are fairly easy to use

• Learning curve about copying to/from GPU 

and allocating memory on GPU

• Didn’t have time yet to try other libraries or 

direct programming on GPU in CUDA

• Got cropping and sharpening operations 

implemented



Example – Convolution Filter

… [Create padded image]

… [Create Gaussian kernel]

// Allocate blurred image of appropriate size

Ipp8u* blurredImg = ippiMalloc_8u_C1(img.getWidth(), 

img.getHeight(),

&blurredImgStepSz);

// Perform the filter

ippiFilter32f_8u_C1R(paddedImgData, 

paddedImage.getStepSize(), blurredImg, 

blurredImgStepSz, imgSz, kernel, kernelSize, 

kernelAnchor);

// Declare a host object for an 8-bit grayscale image

npp::ImageCPU_8u_C1 hostSrc;

// Load grayscale image from disk

npp::loadImage(sFilename, hostSrc);

// Declare a device image and upload from host

npp::ImageNPP_8u_C1 deviceSrc(hostSrc);

… [Create padded image]

… [Create Gaussian kernel]

// Copy kernel to GPU

cudaMemcpy2D(deviceKernel, 12, hostKernel, 

kernelSize.width * sizeof(Npp32s), kernelSize.width

* sizeof(Npp32s), kernelSize.height, 

cudaMemcpyHostToDevice);

// Allocate blurred image of appropriate size (on GPU)       

npp::ImageNPP_8u_C1 deviceBlurredImg(imgSz.width, 

imgSz.height);

// Perform the filter

nppiFilter_8u_C1R(paddedImg.data(widthOffset, 

heightOffset), paddedImg.pitch(),  

deviceBlurredImg.data(), deviceBlurredImg.pitch(), 

imgSz, deviceKernel, kernelSize, kernelAnchor, 

divisor);

// Declare a host image for the result

npp::ImageCPU_8u_C1 

hostBlurredImage(deviceBlurredImg.size());

// Copy the device result data into it

deviceBlurredImg.copyTo(hostBlurredImg.data(), 

hostBlurredImg.pitch());



Performance Testing Methodology

• Test System
– Dual Quad Core Intel® Xeon® 2.83GHz E5440 CPUs (8 

cores total)

– 16 GB RAM

– Debian Linux operating system

– Single Tesla C1060 Compute Processor (240 processing 
cores total)

– PCI-Express x16 Gen2 slot

• Three representative grayscale images of increasing size
– Small image – 1726 x 1450 (2.5 megapixels)

– Average image – 4808 x 3940 (18.9 megapixels)

– Large image – 8966 x 6132 (55.0 megapixels)



Cropping

1. Compute a threshold value

2. Binarize the image based on the 

computed threshold

3. Compute a bounding box that encloses 

all pixels determined as part of the 

document



Good News 

Creating a binarized image is up 

to 16x faster on the GPU!

The larger the image, the more 

effective using the GPU is



Bad News 

Large portion of operation not 

yet optimized on the GPU

Result is only up to 14% faster 

than the CPU implementation



Amdahl’s Law

Speeding up 25% of 

an overall process by 

10x is less of an 

overall improvement 

than speeding up 75% 

of an overall process 

by 1.5x



Sharpening (Unsharp Mask)

1. Perform a Gaussian Blur on the source 
image

2. Take the difference of the blurred image 
from the original and multiply it by a 
specified amount

3. Add the image produced from the 
previous step and clamp any values back 
to the displayable range of [0,255]



Able to completely run 

sharpening operation on GPU

Blur operation so fast it wasn’t 

even a millisecond (infinite 

speedup )

6 – 7x faster for all image sizes 

over current library



Operations in tandem result in 

roughly 2x speed increase

Will want to minimize transfer 

time to/from GPU



Conclusions and Future Work

• Significant increase in performance by parallelizing 
image processing operations for execution on GPUs

• Relatively easy implementation, but dependent on 
maturing libraries and tools

• Need to implement entire set of DPC operations 
(including image encoding/decoding) on GPU to fully 
assess viability

• Need to assess actual throughput in production-like 
environments
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Other Potential Uses 

• Accelerated image processing on 

workstations directly at archives

• Ability to use more sophisticated (and 

time consuming) algorithms

• Improve computationally intensive 

portions of client applications (Ex. image 

audit)

• Probably more
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Thank You.
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