Using GPUs for Image Processing

Ben Baker

Sponsored by:

FAMIL SEARCH

WHERE GENERATIONS MEET

Microsoft ‘%iancestry

|-' Novell ORACLE
‘ Archwes g~ Viawest

3 Eapin
7 &Y/ GENEALOGICAL SOCIETY /¥ o o

wwwwwwwwwwwwwwwwwww

rootstech ¥

(
¢ 4R NEW ENGLAND HISTORIC {/ IIMI

Agenda

* Background
— GPU Computing

— Digital Image Processing at FamilySearch
* Potential GPU based solutions
* Performance Testing Results

* Conclusions and Future Work

FAMIL% SEARCH

CPU vs. GPU Architecture

CPU GPU

* General purpose * Special purpose
processors processors

* Optimized for * Optimized for data level
instruction level parallelism
parallelism * Many smaller

* A few large processors processors executing
capable of multi- single instructions on
threading multiple data (SIMD)

FAMIL%SEARCH

High Performance GPU Computing

* GPUs are getting faster more quickly
than CPUs —- i

== [ntel

* Being used in industry for weather
simulation, medical imaging,
computational finance, etc.

0
[
Q
=
=
©)

* Amazon is now offering access to Tesla

. 2002 2004 2006
GPUs as a service

Year

Using GPUs as general
urpose parallel
X Z purp P
NVIDIA. g J processors

TESLA

S
FAMILYSEARCH

http://gpgpu.org/

Marketing from NVIDIA

e “World’s Fastest |U Server”

“Compared to typical quad-core CPUs, Tesla 20
series computing systems deliver equivalent
performance at |/10th the cost and 1/20th the
power consumption.”

* “Personal Supercomputer”

“250x the computing performance of a standard
workstation”

* Dell is now selling a 3U rack mount unit capable
of holding 16 GPUs connected to 8 servers

iy

P #}
FAMILYSEARCH

http://www.youtube.com/watch?v=KGoT7C8y5rQ

Computer Graphics vs.
Computer Vision

* Approximate inverses of each other:
— Computer graphics — converting “numbers into pictures”
— Computer vision — converting “pictures into numbers”

* GPUs have traditionally been used for computer
graphics — (Ex. Graphics intensive computer games)

* Recent research, hardware and software are using
GPUs for computer vision (Ex. Using Graphics
Devices in Reverse)

* GPUs generally work well when there is ample data-
level parallelism

FAMIL%S!EARCH

Digital Processing Center (DPC)

* Collection of multiple servers in a data center used
by FamilySearch to continuously process millions of
images annually

* Computer Vision types of Image Processing
performed include
— Automatic skew correction
— Automatic document cropping
— Image sharpening
— Image scaling (thumbnail creation)
— Encoding into other image formats

* CPU is current bottleneck (~12 sec/image)

FAMIL%S!EARCH

Promising “Drop In” Technologies

CPU Technologies GPU Technologies
* |PP (Intel Performance Primitives) * NPP (NVIDIA Performance
— Use DCT functions to accelerate JPEG Primitives)

compression

— No license for SDK like Intel’s IPP

— Has DCT functions that could be used
for JPEG compression

* OpenCV * Dec 2010 release of OpenCV has
GPU module
 GPUCV
» Kakadu for JPEG-2000 * Cuj2k (CUDA JPEG-2000)

encoding/decoding

FAMIL% SEARCH

WHERE GENERATIONS MEET

IPP to NPP Conversion

NVIDIA replicated API of Intel’s IPP, so
implemented methods are fairly easy to use

Learning curve about copying to/from GPU
and allocating memory on GPU

Didn’t have time yet to try other libraries or
direct programming on GPU in CUDA

Got cropping and sharpening operations
implemented

FAMIL%SEARCH

HEEESE————————————_—ss—s—.
Example — Convolution Filter

[Create padded image]

[Create Gaussian kernel]

// Allocate blurred image of appropriate size
Ipp8u* blurredImg = ippiMalloc 8u Cl (img.getWidth (),
img.getHeight (),
&blurredImgStepSz) ;
// Perform the filter
ippiFilter32f 8u CIR (paddedImgData,
paddedImage.getStepSize (), blurredImg,
blurredImgStepSz, imgSz, kernel, kernelSize,
kernelAnchor) ,;

// Declare a host object for an 8-bit grayscale image
npp: :ImageCPU 8u Cl hostSrc;

// Load grayscale image from disk

npp: :loadImage (sFilename, hostSrc);

// Declare a device image and upload from host

npp: :ImageNPP 8u Cl deviceSrc (hostSrc);

[Create padded image]

[Create Gaussian kernel]

// Copy kernel to GPU

cudaMemcpy?2D (deviceKernel, 12, hostKernel,
kernelSize.width * sizeof (Npp32s), kernelSize.width
* sizeof (Npp32s), kernelSize.height,
cudaMemcpyHostToDevice) ;

// Allocate blurred image of appropriate size (on GPU)

npp: :ImageNPP 8u Cl deviceBlurredImg (imgSz.width,
imgSz.height) ;

// Perform the filter

nppiFilter 8u CIR (paddedImg.data (widthOffset,
heightOffset), paddedImg.pitch(),
deviceBlurredImg.data (), deviceBlurredImg.pitch(),
imgSz, deviceKernel, kernelSize, kernelAnchor,
divisor) ;

// Declare a host image for the result

npp: :ImageCPU 8u C1
hostBlurredImage (deviceBlurredImg.size()) ;

// Copy the device result data into it

deviceBlurredImg.copyTo (hostBlurredImg.datal(),
hostBlurredImg.pitch()) ;

FAMILYSEARCH

WHERE GENERATIONS MEET

Performance Testing Methodology

* Test System

— Dual Quad Core Intel® Xeon® 2.83GHz E5440 CPUs (8
cores total)

— 16 GB RAM
— Debian Linux operating system

— Single Tesla C1060 Compute Processor (240 processing
cores total)

— PCI-Express x16 Gen2 slot
* Three representative grayscale images of increasing size
— Small image — 1726 x 1450 (2.5 megapixels)
— Average image — 4808 x 3940 (18.9 megapixels)
— Large image — 8966 x 6132 (55.0 megapixels)

FAMIL%S!EARCH

Cropping

|. Compute a threshold value

2. Binarize the image based on the
computed threshold

3. Compute a bounding box that encloses
all pixels determined as part of the
document

Binary Thresholding of Images

=—=CPU =—l—=GPU

—
WA
=
=

—
2
=
=
-

Good News ©

Image Sirze (megapixels)

Creating a binarized image is up
to |6x faster on the GPU!

The larger the image, the more
effective using the GPU is

-
w
=
=

—
g

=
-

1400

1200

1000

800

e00

400

200

CroppingOperation

=4=CPU =—ll=GPU

Image Size (megapixels)

Bad News ®

Large portion of operation not
yet optimized on the GPU

Result is only up to 14% faster
than the CPU implementation

Sk

FAMILYSEARCH

Amdahl’s Law

Speeding up 25% of
an overall process by
|0x is less of an
overall improvement
than speeding up 75%
of an overall process
by 1.5x

Original Process

25% 10x Faster

75%1.5x Faster

%

FAMIL

T

JE

SEARCH

R —————————m——————
Sharpening (Unsharp Mask)

|. Perform a Gaussian Blur on the source
Image
2. Take the difference of the blurred image

from the original and multiply it by a
specified amount

3. Add the image produced from the
previous step and clamp any values back
to the displayable range of [0,255]

FAMIL%S!EARCH

p—
[
=
=

T
g

£
o

1e00

1400

1200

1000

800

B0O0

400

200

Sharpening Operation

= TP =il P

Able to completely run
sharpening operation on GPU
mage Size (megapixels . - ’
moge Sie {megephel) Blur operation so fast it wasn'’t

even a millisecond (infinite
speedup ©)

6 — 7x faster for all image sizes
over current library

Sk
[YSEARCH

FAMI

N E

—
w
=
=

—
g
(=
=
-

Cropping and Sharpening Operations Combined

3000

2500

2000

1500

1000

500

(Includes GPU Transfer Time)

i CPU =l GP LI

30

Image Size (megapixels)

Operations in tandem result in
roughly 2x speed increase

Will want to minimize transfer
time to/from GPU

Conclusions and Future Work

* Significant increase in performance by parallelizing
image processing operations for execution on GPUs

* Relatively easy implementation, but dependent on
maturing libraries and tools

* Need to implement entire set of DPC operations
(including image encoding/decoding) on GPU to fully
assess viability

* Need to assess actual throughput in production-like
environments

FAMIL%S!EARCH

Other Potential Uses

* Accelerated image processing on
workstations directly at archives

* Ability to use more sophisticated (and
time consuming) algorithms

* Improve computationally intensive
portions of client applications (Ex. image
audit)

* Probably more

FAMIL%SEARCH

WHERE GENERATIONS MEET

Thank You.

Sponsored by:

Fe=_ Novell ORACLE
E“ a0 |
Archlves N~ Viawest

Cestry b-llc

Utah Technology Council

(
o AR NEw ENGLAND HISTORIC {/ IIMI

5 &) GENEALOGICAL SOCIETY

wwwwwwwwwwwwwwwwwww

DDDDDDDDDDD

rootstech @

