
Sponsored by:

Ben Baker

Agenda

• Background

– GPU Computing

– Digital Image Processing at FamilySearch

• Potential GPU based solutions

• Performance Testing Results

• Conclusions and Future Work

2

CPU vs. GPU Architecture

CPU

• General purpose

processors

• Optimized for

instruction level

parallelism

• A few large processors

capable of multi-

threading

GPU

• Special purpose

processors

• Optimized for data level

parallelism

• Many smaller

processors executing

single instructions on

multiple data (SIMD)

3

High Performance GPU Computing

• GPUs are getting faster more quickly

than CPUs

• Being used in industry for weather

simulation, medical imaging,

computational finance, etc.

• Amazon is now offering access to Tesla

GPUs as a service

4

Using GPUs as general

purpose parallel

processors

http://gpgpu.org

http://gpgpu.org/

Marketing from NVIDIA

• “World’s Fastest 1U Server”

“Compared to typical quad-core CPUs, Tesla 20
series computing systems deliver equivalent
performance at 1/10th the cost and 1/20th the
power consumption.”

• “Personal Supercomputer”

“250x the computing performance of a standard
workstation”

• Dell is now selling a 3U rack mount unit capable
of holding 16 GPUs connected to 8 servers

http://www.youtube.com/watch?v=KGoT7C8y5rQ

Computer Graphics vs.

Computer Vision

• Approximate inverses of each other:
– Computer graphics – converting “numbers into pictures”

– Computer vision – converting “pictures into numbers”

• GPUs have traditionally been used for computer
graphics – (Ex. Graphics intensive computer games)

• Recent research, hardware and software are using
GPUs for computer vision (Ex. Using Graphics
Devices in Reverse)

• GPUs generally work well when there is ample data-
level parallelism

Digital Processing Center (DPC)

• Collection of multiple servers in a data center used
by FamilySearch to continuously process millions of
images annually

• Computer Vision types of Image Processing
performed include

– Automatic skew correction

– Automatic document cropping

– Image sharpening

– Image scaling (thumbnail creation)

– Encoding into other image formats

• CPU is current bottleneck (~12 sec/image)

Promising “Drop In” Technologies

CPU Technologies

• IPP (Intel Performance Primitives)
– Use DCT functions to accelerate JPEG

compression

• OpenCV

• Kakadu for JPEG-2000
encoding/decoding

GPU Technologies

• NPP (NVIDIA Performance

Primitives)

– No license for SDK like Intel’s IPP

– Has DCT functions that could be used

for JPEG compression

• Dec 2010 release of OpenCV has

GPU module

• GPUCV

• Cuj2k (CUDA JPEG-2000)

IPP to NPP Conversion

• NVIDIA replicated API of Intel’s IPP, so

implemented methods are fairly easy to use

• Learning curve about copying to/from GPU

and allocating memory on GPU

• Didn’t have time yet to try other libraries or

direct programming on GPU in CUDA

• Got cropping and sharpening operations

implemented

Example – Convolution Filter

… [Create padded image]

… [Create Gaussian kernel]

// Allocate blurred image of appropriate size

Ipp8u* blurredImg = ippiMalloc_8u_C1(img.getWidth(),

img.getHeight(),

&blurredImgStepSz);

// Perform the filter

ippiFilter32f_8u_C1R(paddedImgData,

paddedImage.getStepSize(), blurredImg,

blurredImgStepSz, imgSz, kernel, kernelSize,

kernelAnchor);

// Declare a host object for an 8-bit grayscale image

npp::ImageCPU_8u_C1 hostSrc;

// Load grayscale image from disk

npp::loadImage(sFilename, hostSrc);

// Declare a device image and upload from host

npp::ImageNPP_8u_C1 deviceSrc(hostSrc);

… [Create padded image]

… [Create Gaussian kernel]

// Copy kernel to GPU

cudaMemcpy2D(deviceKernel, 12, hostKernel,

kernelSize.width * sizeof(Npp32s), kernelSize.width

* sizeof(Npp32s), kernelSize.height,

cudaMemcpyHostToDevice);

// Allocate blurred image of appropriate size (on GPU)

npp::ImageNPP_8u_C1 deviceBlurredImg(imgSz.width,

imgSz.height);

// Perform the filter

nppiFilter_8u_C1R(paddedImg.data(widthOffset,

heightOffset), paddedImg.pitch(),

deviceBlurredImg.data(), deviceBlurredImg.pitch(),

imgSz, deviceKernel, kernelSize, kernelAnchor,

divisor);

// Declare a host image for the result

npp::ImageCPU_8u_C1

hostBlurredImage(deviceBlurredImg.size());

// Copy the device result data into it

deviceBlurredImg.copyTo(hostBlurredImg.data(),

hostBlurredImg.pitch());

Performance Testing Methodology

• Test System
– Dual Quad Core Intel® Xeon® 2.83GHz E5440 CPUs (8

cores total)

– 16 GB RAM

– Debian Linux operating system

– Single Tesla C1060 Compute Processor (240 processing
cores total)

– PCI-Express x16 Gen2 slot

• Three representative grayscale images of increasing size
– Small image – 1726 x 1450 (2.5 megapixels)

– Average image – 4808 x 3940 (18.9 megapixels)

– Large image – 8966 x 6132 (55.0 megapixels)

Cropping

1. Compute a threshold value

2. Binarize the image based on the

computed threshold

3. Compute a bounding box that encloses

all pixels determined as part of the

document

Good News 

Creating a binarized image is up

to 16x faster on the GPU!

The larger the image, the more

effective using the GPU is

Bad News 

Large portion of operation not

yet optimized on the GPU

Result is only up to 14% faster

than the CPU implementation

Amdahl’s Law

Speeding up 25% of

an overall process by

10x is less of an

overall improvement

than speeding up 75%

of an overall process

by 1.5x

Sharpening (Unsharp Mask)

1. Perform a Gaussian Blur on the source
image

2. Take the difference of the blurred image
from the original and multiply it by a
specified amount

3. Add the image produced from the
previous step and clamp any values back
to the displayable range of [0,255]

Able to completely run

sharpening operation on GPU

Blur operation so fast it wasn’t

even a millisecond (infinite

speedup )

6 – 7x faster for all image sizes

over current library

Operations in tandem result in

roughly 2x speed increase

Will want to minimize transfer

time to/from GPU

Conclusions and Future Work

• Significant increase in performance by parallelizing
image processing operations for execution on GPUs

• Relatively easy implementation, but dependent on
maturing libraries and tools

• Need to implement entire set of DPC operations
(including image encoding/decoding) on GPU to fully
assess viability

• Need to assess actual throughput in production-like
environments

19

Other Potential Uses

• Accelerated image processing on

workstations directly at archives

• Ability to use more sophisticated (and

time consuming) algorithms

• Improve computationally intensive

portions of client applications (Ex. image

audit)

• Probably more

21

Thank You.

Sponsored by:

