Using GPUs for Image Processing

Ben Baker

Sponsored by:

rootstee

Agenda

- Background

 GPU Computing
 Digital Image Processing at FamilySearch

 Potential GPU based solutions
 Performance Testing Results
- Conclusions and Future Work

CPU vs. GPU Architecture

<u>CPU</u>

- General purpose
 processors
- Optimized for instruction level parallelism
- A few large processors capable of multithreading

<u>GPU</u>

- Special purpose processors
- Optimized for data level parallelism
- Many smaller processors executing single instructions on multiple data (SIMD)

High Performance GPU Computing

- GPUs are getting faster more quickly than CPUs
- Being used in industry for weather simulation, medical imaging, computational finance, etc.
- Amazon is now offering access to Tesla GPUs as a service

Using GPUs as general purpose parallel processors

<u>http://gpgpu.org</u>

Marketing from NVIDIA

• "World's Fastest IU Server"

"Compared to typical quad-core CPUs, Tesla 20 series computing systems deliver equivalent performance at I/I0th the cost and I/20th the power consumption."

- "Personal Supercomputer"
 "250x the computing performance of a standard workstation"
- Dell is now selling a 3U rack mount unit capable of holding 16 GPUs connected to 8 servers

Computer Graphics vs. Computer Vision

- Approximate inverses of each other:
 - Computer graphics converting "numbers into pictures"
 - Computer vision converting "pictures into numbers"
- GPUs have traditionally been used for computer graphics (Ex. Graphics intensive computer games)
- Recent research, hardware and software are using GPUs for computer vision (Ex. Using Graphics Devices in Reverse)
- GPUs generally work well when there is ample datalevel parallelism

Digital Processing Center (DPC)

- Collection of multiple servers in a data center used by FamilySearch to continuously process millions of images annually
- Computer Vision types of Image Processing performed include
 - Automatic skew correction
 - Automatic document cropping
 - Image sharpening
 - Image scaling (thumbnail creation)
 - Encoding into other image formats
- CPU is current bottleneck (~12 sec/image)

Promising "Drop In" Technologies

CPU Technologies

- IPP (Intel Performance Primitives)
 - Use DCT functions to accelerate JPEG compression

• OpenCV

• Kakadu for JPEG-2000 encoding/decoding

GPU Technologies

- NPP (NVIDIA Performance Primitives)
 - No license for SDK like Intel's IPP
 - Has DCT functions that could be used for JPEG compression
- Dec 2010 release of OpenCV has GPU module
- GPUCV
- Cuj2k (CUDA JPEG-2000)

IPP to NPP Conversion

- NVIDIA replicated API of Intel's IPP, so implemented methods are fairly easy to use
- Learning curve about copying to/from GPU and allocating memory on GPU
- Didn't have time yet to try other libraries or direct programming on GPU in CUDA
- Got cropping and sharpening operations implemented

Example – Convolution Filter

... [Create padded image]

... [Create Gaussian kernel]

&blurredImgStepSz);

// Perform the filter

// Declare a host object for an 8-bit grayscale image
npp::ImageCPU_8u_C1 hostSrc;
// Load grayscale image from disk
npp::loadImage(sFilename, hostSrc);
// Declare a device image and upload from host
npp::ImageNPP_8u_C1 deviceSrc(hostSrc);

- ... [Create padded image]
- ... [Create Gaussian kernel]

// Copy kernel to GPU
cudaMemcpy2D(deviceKernel, 12, hostKernel,
 kernelSize.width * sizeof(Npp32s), kernelSize.width
 * sizeof(Npp32s), kernelSize.height,
 cudaMemcpyHostToDevice);
// Allocate blurred image of appropriate size (on GPU)

// Perform the filter

```
nppiFilter_8u_C1R(paddedImg.data(widthOffset,
    heightOffset), paddedImg.pitch(),
    deviceBlurredImg.data(), deviceBlurredImg.pitch(),
    imgSz, deviceKernel, kernelSize, kernelAnchor,
    divisor);
```

// Declare a host image for the result

Performance Testing Methodology

- Test System
 - Dual Quad Core Intel® Xeon® 2.83GHz E5440 CPUs (8 cores total)
 - 16 GB RAM
 - Debian Linux operating system
 - Single Tesla C1060 Compute Processor (240 processing cores total)
 - PCI-Express x16 Gen2 slot
- Three representative grayscale images of increasing size
 - Small image 1726 x 1450 (2.5 megapixels)
 - Average image 4808 x 3940 (18.9 megapixels)
 - Large image 8966 x 6132 (55.0 megapixels)

Cropping

- I. Compute a threshold value
- 2. Binarize the image based on the computed threshold
- 3. Compute a bounding box that encloses all pixels determined as part of the document

Good News 😊

Creating a binarized image is up to 16x faster on the GPU!

The larger the image, the more effective using the GPU is

Bad News 🛞

Large portion of operation not yet optimized on the GPU

Result is only up to 14% faster than the CPU implementation

Amdahl's Law

Speeding up 25% of an overall process by 10x is less of an overall improvement than speeding up 75% of an overall process by 1.5x

Sharpening (Unsharp Mask)

- I. Perform a Gaussian Blur on the source image
- 2. Take the difference of the blurred image from the original and multiply it by a specified amount
- 3. Add the image produced from the previous step and clamp any values back to the displayable range of [0,255]

Sharpening Operation

Able to completely run sharpening operation on GPU

Blur operation so fast it wasn't even a millisecond (infinite speedup ©)

6 – 7x faster for all image sizes over current library

Cropping and Sharpening Operations Combined (Includes GPU Transfer Time)

Operations in tandem result in roughly 2x speed increase

Will want to minimize transfer time to/from GPU

Conclusions and Future Work

- Significant increase in performance by parallelizing image processing operations for execution on GPUs
- Relatively easy implementation, but dependent on maturing libraries and tools
- Need to implement entire set of DPC operations (including image encoding/decoding) on GPU to fully assess viability
- Need to assess actual throughput in production-like environments

Other Potential Uses

- Accelerated image processing on workstations directly at archives
- Ability to use more sophisticated (and time consuming) algorithms
- Improve computationally intensive portions of client applications (Ex. image audit)
- Probably more

Thank You.

Sponsored by:

rootstec