
Sponsored by:

Ben Baker

Agenda

• Background

– GPU Computing

– Digital Image Processing at FamilySearch

• Potential GPU based solutions

• Performance Testing Results

• Conclusions and Future Work

2

CPU vs. GPU Architecture

CPU

• General purpose

processors

• Optimized for

instruction level

parallelism

• A few large processors

capable of multi-

threading

GPU

• Special purpose

processors

• Optimized for data level

parallelism

• Many smaller

processors executing

single instructions on

multiple data (SIMD)

3

High Performance GPU Computing

• GPUs are getting faster more quickly

than CPUs

• Being used in industry for weather

simulation, medical imaging,

computational finance, etc.

• Amazon is now offering access to Tesla

GPUs as a service

4

Using GPUs as general

purpose parallel

processors

http://gpgpu.org

http://gpgpu.org/

Marketing from NVIDIA

• “World’s Fastest 1U Server”

“Compared to typical quad-core CPUs, Tesla 20
series computing systems deliver equivalent
performance at 1/10th the cost and 1/20th the
power consumption.”

• “Personal Supercomputer”

“250x the computing performance of a standard
workstation”

• Dell is now selling a 3U rack mount unit capable
of holding 16 GPUs connected to 8 servers

http://www.youtube.com/watch?v=KGoT7C8y5rQ

Computer Graphics vs.

Computer Vision

• Approximate inverses of each other:
– Computer graphics – converting “numbers into pictures”

– Computer vision – converting “pictures into numbers”

• GPUs have traditionally been used for computer
graphics – (Ex. Graphics intensive computer games)

• Recent research, hardware and software are using
GPUs for computer vision (Ex. Using Graphics
Devices in Reverse)

• GPUs generally work well when there is ample data-
level parallelism

Digital Processing Center (DPC)

• Collection of multiple servers in a data center used
by FamilySearch to continuously process millions of
images annually

• Computer Vision types of Image Processing
performed include

– Automatic skew correction

– Automatic document cropping

– Image sharpening

– Image scaling (thumbnail creation)

– Encoding into other image formats

• CPU is current bottleneck (~12 sec/image)

Promising “Drop In” Technologies

CPU Technologies

• IPP (Intel Performance Primitives)
– Use DCT functions to accelerate JPEG

compression

• OpenCV

• Kakadu for JPEG-2000
encoding/decoding

GPU Technologies

• NPP (NVIDIA Performance

Primitives)

– No license for SDK like Intel’s IPP

– Has DCT functions that could be used

for JPEG compression

• Dec 2010 release of OpenCV has

GPU module

• GPUCV

• Cuj2k (CUDA JPEG-2000)

IPP to NPP Conversion

• NVIDIA replicated API of Intel’s IPP, so

implemented methods are fairly easy to use

• Learning curve about copying to/from GPU

and allocating memory on GPU

• Didn’t have time yet to try other libraries or

direct programming on GPU in CUDA

• Got cropping and sharpening operations

implemented

Example – Convolution Filter

… [Create padded image]

… [Create Gaussian kernel]

// Allocate blurred image of appropriate size

Ipp8u* blurredImg = ippiMalloc_8u_C1(img.getWidth(),

img.getHeight(),

&blurredImgStepSz);

// Perform the filter

ippiFilter32f_8u_C1R(paddedImgData,

paddedImage.getStepSize(), blurredImg,

blurredImgStepSz, imgSz, kernel, kernelSize,

kernelAnchor);

// Declare a host object for an 8-bit grayscale image

npp::ImageCPU_8u_C1 hostSrc;

// Load grayscale image from disk

npp::loadImage(sFilename, hostSrc);

// Declare a device image and upload from host

npp::ImageNPP_8u_C1 deviceSrc(hostSrc);

… [Create padded image]

… [Create Gaussian kernel]

// Copy kernel to GPU

cudaMemcpy2D(deviceKernel, 12, hostKernel,

kernelSize.width * sizeof(Npp32s), kernelSize.width

* sizeof(Npp32s), kernelSize.height,

cudaMemcpyHostToDevice);

// Allocate blurred image of appropriate size (on GPU)

npp::ImageNPP_8u_C1 deviceBlurredImg(imgSz.width,

imgSz.height);

// Perform the filter

nppiFilter_8u_C1R(paddedImg.data(widthOffset,

heightOffset), paddedImg.pitch(),

deviceBlurredImg.data(), deviceBlurredImg.pitch(),

imgSz, deviceKernel, kernelSize, kernelAnchor,

divisor);

// Declare a host image for the result

npp::ImageCPU_8u_C1

hostBlurredImage(deviceBlurredImg.size());

// Copy the device result data into it

deviceBlurredImg.copyTo(hostBlurredImg.data(),

hostBlurredImg.pitch());

Performance Testing Methodology

• Test System
– Dual Quad Core Intel® Xeon® 2.83GHz E5440 CPUs (8

cores total)

– 16 GB RAM

– Debian Linux operating system

– Single Tesla C1060 Compute Processor (240 processing
cores total)

– PCI-Express x16 Gen2 slot

• Three representative grayscale images of increasing size
– Small image – 1726 x 1450 (2.5 megapixels)

– Average image – 4808 x 3940 (18.9 megapixels)

– Large image – 8966 x 6132 (55.0 megapixels)

Cropping

1. Compute a threshold value

2. Binarize the image based on the

computed threshold

3. Compute a bounding box that encloses

all pixels determined as part of the

document

Good News

Creating a binarized image is up

to 16x faster on the GPU!

The larger the image, the more

effective using the GPU is

Bad News

Large portion of operation not

yet optimized on the GPU

Result is only up to 14% faster

than the CPU implementation

Amdahl’s Law

Speeding up 25% of

an overall process by

10x is less of an

overall improvement

than speeding up 75%

of an overall process

by 1.5x

Sharpening (Unsharp Mask)

1. Perform a Gaussian Blur on the source
image

2. Take the difference of the blurred image
from the original and multiply it by a
specified amount

3. Add the image produced from the
previous step and clamp any values back
to the displayable range of [0,255]

Able to completely run

sharpening operation on GPU

Blur operation so fast it wasn’t

even a millisecond (infinite

speedup)

6 – 7x faster for all image sizes

over current library

Operations in tandem result in

roughly 2x speed increase

Will want to minimize transfer

time to/from GPU

Conclusions and Future Work

• Significant increase in performance by parallelizing
image processing operations for execution on GPUs

• Relatively easy implementation, but dependent on
maturing libraries and tools

• Need to implement entire set of DPC operations
(including image encoding/decoding) on GPU to fully
assess viability

• Need to assess actual throughput in production-like
environments

19

Other Potential Uses

• Accelerated image processing on

workstations directly at archives

• Ability to use more sophisticated (and

time consuming) algorithms

• Improve computationally intensive

portions of client applications (Ex. image

audit)

• Probably more

21

Thank You.

Sponsored by:

