
Connectionist Temporal Classification for Offline
Handwritten Text Recognition

Oliver Nina
∗

University of Central Florida
Orlando, FL

G.K.M. Tobin
Institute for Clarity in Documentation

P.O. Box 1212
Dublin, Ohio 43017-6221

webmaster@marysville-ohio.com

Lars Thørväld
The Thørväld Group

1 Thørväld Circle
Hekla, Iceland

larst@affiliation.org

ABSTRACT
Handwritten text recognition is an important problem that
has many applications such as automatic indexing and tran-
scription of historical documents.

In the last decade, there have been significant improve-
ments with novel methods such as the Connectionist Tem-
poral Classification (CTC) approach which combines gen-
erative Hidden Markov Models (HMM) based methods and
recurrent neural networks to solve this problem.

CTC is currently the state of the art approach for offline
handwriting recognition. Despite such improvements, little
work has been done on speeding up the training phase of the
neural networks and parallelizing the pipeline using GPUs
for this particular task. Furthermore, there is also little work
on open source libraries to perform further research in this
area.

In this paper we give an overview of the CTC algorithm as
well as discuss how such algorithm could be speed up using
a parallelized implementation.

1. INTRODUCTION
Handwritten text recognition (HTR) is an open field of

research and a relevant problem that helps automatically
process historical documents.

In recent years great advances in deep learning and com-
puter vision have allowed improvements on document and
image processing including HTR.

Currently the state of the art on HTR is the Connec-
tionist Temporal Classification algorithm which was used to
win a recent HTR competition [7] on the transScriptorium
dataset [8].

Despite such advances in this field, little has been done to
produce open source projects that address this problem as
well as methods that utilize graphical process units (GPUs)
to speed up the training phase.

∗corresponding author’s email address onina@eecs.ucf.edu

In this paper we give an brief overview of the CTC algo-
rithm for recognizing handwritten text images and discuss
possible solutions to improve performance and accuracy.

2. BACKGROUND
Handwritten text recognition (HTR) is a problem that

has been studied for many years.
Some of the earlier methods on handwriting recognition

utilized Hidden Markov Models (HMM) such as [3] others
used neural networks such as in [4] and other methods used
a combination of both [9]

Newer methods involve more powerful models using re-
current neural networks as in Connectionist Temporal Clas-
sification [4] which is currently the state of the art in hand-
writing recognition.

The CTC algorithm has been used on commercial and
open source software such as in ocropy [1]. Although there
are some open source projects that provide libraries for CTC
such as ocropy [1] or tesserac [2], however, such tools are cur-
rently only used for typed text or OCR and not for hand-
written text.

In this paper we describe the use of the ocrpy library for
handwriting recognition and discuss CTC algorithm which
is behind the learning procedure of such library. We also
discuss solutions to improve training time.

3. PROPOSED METHOD

3.1 Normalization
The first step of the process is the proper normalization

of the text. In our method we assume that lines of the docu-
ment have been segmented accordingly and other operations
such as rotation of the pages have been performed already.

3.1.1 De-slant
Given an image of a line segment we proceed to calcu-

late the slant angle needed to remove the text slant from
the text. We examine training samples to approximate a
constant value as the angle to perform a shear operation in
an affine transformation. We see the results of our de-slant
approach in Figure 1b

3.1.2 Contrast Normalization
We also perform contrast normalization on the values of

the image by subtracting the pixel values from the highest
pixel value in the image which will cause the histogram of
the image to stretch through the whole gamma of gray scale

1



values. We can see the result of our contrast normalization
in Figure 1c

3.1.3 RNN Input Normalization
Finally in order to input the image into our Recurrent

neural network which expects a set number of input pixels
at every time step, we normalize the size of the height of the
image to fit to the RNN input size which is 48. This size
normalization of the image could cause loss on the quality
of the image. Higher quality of the images could be used for
RNNs with higher number of parameters, however, it could
affect the speed of the training phase.

3.1.4 Feature Extraction
Each feature for the temporal space is obtained at every

pixel column of the image. Hence, several columns of the
image will have the same label which will correspond to one
character in the image.

3.2 Long Short Term Memory
In this part of our algorithm we employ a recurrent neural

network known as Long Short Term Memory (LSTM) [5, 6].
LSTMs have been used successfully for offline recognition.

Traditional LSTMs, also known as vanilla LSTMs, differ
from regular RNNs by adding gating functions that allows
them to memorize or forget inputs seen in previous time
steps.

The main gating functions defined for the LSTM formula-
tions are: an input gate it which prevents the cell unit to be
switched off by irrelevant inputs, a forget gate ft which di-
minishes the effects of previous cell states, an update gate zt
which updates the state of the cell based on the input gate,
a memory cell unit ct which stores the state at the current
time step, and an output gate ot which reduces perturbation
of the cell output to other consecutive cells.

The basic formulation of LSTM is defined as follows:

ŷt = f (st)

st = W (y)ht

it = σ(W (i)xt + U (i)ht−1)

ft = σ(W (f)xt + U (f)ht−1)

ot = σ(W (o)xt + U (o)ht−1)

zt = g(W (z)xt + U (z)ht−1)

ct = it ◦ zt + ft ◦ ct−1

ht = ot ◦ g(ct)

(1)

In a regular LSTM network f is a softmax function that is
ouput for classification purposes, however, in our application
f is the input to a CTC layer which will be explained later in
this paper, σ represents the sigmoid function σ(a) = 1

1+e−a

and g is the hyperbolic tangent function g(a) = 1+e−2a

1−e−2a . The

operation ◦ represents the Hadamard product. W (?) and
U (?), where ? = {i, f, o, z}, are the weights being learned.

Note that for simplicity, we are omitting the bias terms for
it, ft, ot, zt. Because ct is a linear function composed of the
sum of two products, such linearity helps lessen the effects of
the vanishing gradient problem during backpropagation as
well as modulate the influence of current inputs and previous
cell states.

3.3 Connectionist Temporal Classification

(a) Original Image

(b) De-slanting

(c) Contrast Normalization

Figure 1: Line Image Normalization Process

The connectionist temporal classification(CTC) [4] is an
output layer used for optical character recognition and uses
as inputs a normalized softmax classification layer which is
output by the LSTM network. This normalized output is
used to approximate the conditional probabilities of observ-
ing a character or a blank k at time t. The conditional
probability p(π|x) of a specific path of consecutive charac-
ters could be obtained by the sums of all the paths that could
have the characters in them. This is achieve by using the
forward-backward algorithm to obtain the total probability.
More specifically:

p(l|x) =
∑

πεB−1(l)

p(π|x)
(2)

We allow all the paths to start with either a blank (b) or
a label l. Hence, the label sequence probability is given by:

p(l|x) =

l′∑
s=1

αsβs (3)

where α corresponds to the forward variables and β is the
backward variables.

The objective function of CTC is given by:

O = −
∑

(x,z)εS

log p(z|x) (4)

Which we can differentiate with respect to the parameters
of the network and train through gradient descent. For the
differentiation details of the CTC algorithm we refer the
reader to [4]. By using CTC in this way allows us to perform
recognition of the text at every time step t without having
to previously segment the characters individually from the
image.

3.3.1 CTC decoding
At every time step after training we can perform a clas-

sification of every time step by picking the label with the
highest probability In this way:

l′ = arg max
l
p(l|x) (5)

3.4 Transfer Learning
In order to speed up the training phase for our CPU imple-

mentation, we use the weights of a model trained on typed

2



(a) TRU: “ny of our Author ’ s Windmills will prove geese .”
ALN:”ny of f our Author ’ s Windmils wil prove geee .”
OUT:’teteee thetee theeeette ant taene faee’

(b) TRU: ”every prisoner convicted of a felony after his discharge ,”
ALN: ”evvery prisoner conviceed of a felony after his dischage ,”
OUT: ”teef teeeeeee sasestet of o tfeey ofostee teeteen”

(c) TRU: ”15th . To present to the Court of King ’ s Bench on a”
ALN: ”15thh . To presnt to the Court of King ’ s Bench on n a”
OUT: ’aof sahaeante the fantf theg theene o ne’

Figure 2: Output of our training phase on a CPU after 157K
iterations (14 epochs)

written text for 100K iterations. Such model is used to ini-
tialize the weights of a new neural network trained on hand
written text. Such initialization, helps improve the training
time by allowing to fine tune the weights for hand written
text.

4. RESULTS
Data: We use the Transcriptorium dataset [8] to train

our neural network. We use the first batch of line images
for training that contains more than 11K images. Figure 2
shows some of the training images of this dataset. Figure 2
shows also the result of our model trained on a CPU version
of ocropy after 157K iterations. TRU refers to ground truth,
ALN is the output of CTC aligned with the training text and
OUT is the final output of the network.

Figures 3a, 3b, 3c, show that after about 14 epochs the
network start to align its predictions very close to the orig-
inal text and on that image we can also see that the ouput
of the network starts to take some form of the actual text.

In order to train our network on a CPU for more than 10
epochs as seen in Figure 2, we needed about two days for
the training process to run.

If we increase the number of iterations to 465K, we can see
that our model starts learning some of the words that has
frequently seen in the training set as we can see in Figure 3.

5. IMPLEMENTATION DETAILS
We used the implementation of the LSTM in Ocrpy. How-

ever, some of the issues with Ocrpy is that the training phase
is computationally expensive requiring several days to train
a simple model.

Another drawback of Ocrpy is that to perform experi-
ments with other types of recurrent units, it requires to
manually calculate the derivation of the objective function.

Hence, one way to alleviate both problems is by using
Theano. We experimented with a new version of the CTC
algorithm based in Theano which is currently under develop-
ment. The Theano version of the CTC algorithm allows us
to compute the gradient descent computation on the GPU.

It also helps us experiment with other types of recurrent
units more easily

Our code for our cpu version of our HTR system is an
open source project on Github at:

https://github.com/olivernina/ocropy.
The code for our gpu version which is under development

is found at:
https://github.com/olivernina/htr-ctc

6. CONCLUSIONS
In this paper we present an overview of the CTC algo-

rithm for offline handwriting recognition. We also discuss
alternatives to improve training performance of the CTC
algorithm and research with different recurrent units.

7. REFERENCES
[1] Ocropy. https://github.com/tmbdev/ocropy.

[2] Tesseract.
https://github.com/tesseract-ocr/tesseract.

[3] A. El-Yacoubi, R. Sabourin, M. Gilloux, C. Suen, et al.
Off-line handwritten word recognition using hidden
markov models.

[4] A. Graves, M. Liwicki, S. Fernández, R. Bertolami,
H. Bunke, and J. Schmidhuber. A novel connectionist
system for unconstrained handwriting recognition.
Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 31(5):855–868, 2009.

[5] S. Hochreiter and J. Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997.

[6] H. Jaeger. The echo state approach to analysing and
training recurrent neural networks-with an erratum
note. Bonn, Germany: German National Research
Center for Information Technology GMD Technical
Report, 148:34, 2001.

[7] J. Sanchez, A. Toselli, V. Romero, and E. Vidal. Icdar
2015 competition htrts: Handwritten text recognition
on the transcriptorium dataset. In Document Analysis
and Recognition (ICDAR), 2015 13th International
Conference on, pages 1166–1170, Aug 2015.

(a) TRU: “to have it in one ’ s possession or to apply it to any other
pur=”
ALN: “to have it in one ’s possession or to apply it to any other
puur=”
OUT: “tf bane it in oneis posseseon or to apply it to any other puu”

(b) TRU: “there is often as much knowledge in this case as there can
be”
ALN: “there is often as much knowledge in this case as there can be”
OUT: “hore is often as muct tnnledge in this case as there can te”

(c) TRU: “it to pass for any thing but what it purports to be .”
ALN: “it to pass for any thing but what it purports to be .”
OUT: “tt to pats tor any thing but what it purports to t”

Figure 3: Output of our training phase on a CPU after 468K
iterations (40 epochs)

3

https://github.com/tmbdev/ocropy
https://github.com/tesseract-ocr/tesseract


[8] J. A. Sánchez, G. Mühlberger, B. Gatos, P. Schofield,
K. Depuydt, R. M. Davis, E. Vidal, and J. de Does.
transcriptorium: a european project on handwritten
text recognition. In Proceedings of the 2013 ACM
symposium on Document engineering, pages 227–228.
ACM, 2013.

[9] Y. Tay, P.-M. Lallican, M. Khalid, C. Viard-Gaudin,
and S. Knerr. Offline handwritten word recognition
using a hybrid neural network and hidden markov
model. In Signal Processing and its Applications, Sixth
International, Symposium on. 2001, volume 2, pages
382–385 vol.2, 2001.

4


	Introduction
	Background
	Proposed Method
	Normalization
	De-slant
	Contrast Normalization
	RNN Input Normalization
	Feature Extraction

	Long Short Term Memory
	Connectionist Temporal Classification
	CTC decoding

	Transfer Learning

	Results
	Implementation Details
	Conclusions
	References

