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Image Assumptions

  Image consists of “white”, “black”, and “gray”
  Most of the pixels are “white” background
  Some of the pixels are “black” / ”gray”
  Little illumination gradient is present
  Sufficient contrast exists



The Binarization Problem

 Black, White, and Gray
 Separate Whites from Blacks and Grays



A Solution

  Fit a Kumaraswamy Distribution to White pixels
  Select a Confidence Level
  Find Corresponding Pixel Level



Sample 1



Sample 2



Sample 3



Sample 4



Why the Kumaraswamy Distribution?

 It is finite
 It is computationally easy
 It looks like the actual data



The Kumaraswamy Distribution

1−(1−xa)
b

abx (a−1) (1−xa)(b−1 )

1−(1− y(1 /b ))(1/a )

 Cumulative Distribution Function

 Probability Density Function

 Inverse CDF

Constraints

PDF of a=20, b=3

x∈[0,1 ] ,a≻0, b≻0



Fitting to Obtain the Parameters

  Start with the quartile values 0 < q1 < q2 < q3 < 1
  Get the initial approximations

a0=
log (1−1/22 /7 )−log (1−31 /7 /22/7 )
log (q 3 /q 1)

=
1.5

log (q 3 /q 1)

b0=
log (2)

log (1 /(1−q2a0))

  Iterate new values until close enough

ai+1=
log (1−(1 /4 )

1 /bi)−log(1−(3 /4 )
1 /bi)

log (q3 /q 1)

bi+1=
log (2)

log (1 /(1−q 2ai+1))



Conclusion

 The background edge threshold method seems 
to work quite well.

 It is easy to implement
 It may be useful for you
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There is nothing really new in this presentation.  The only 
thing that is unusual is that we are going to talk about a 
probability distribution that you have probably never heard 
of before, the Kumaraswamy Distribution.  The reason I 
want to talk about it is that, having used it in conjunction 
with many thousands of images from the U.S. 1930 
Census, I have found that it works very well for finding the 
lower edge of the background pixel values.



  

 

Image Assumptions

  Image consists of “white”, “black”, and “gray”
  Most of the pixels are “white” background
  Some of the pixels are “black” / ”gray”
  Little illumination gradient is present
  Sufficient contrast exists

By a filled-out form I mean that the image consists of mostly 
“white” background, has some printed lines, and some hand-
written / typed information in it.  The “white” background 
needs to have similar properties across the entire image.  
There needs to be enough contrast so that discreet pixel 
values are not too clumped.

The reason for doing binarization at all, is that when we are 
searching for structures in an image, like a line, the 
computations are often less ambiguous if the input data 
represents an estimate of whether a pixel is part of the 
structure or not.  Hence the value of using the binarization 
process.



  

 

The Binarization Problem

 Black, White, and Gray
 Separate Whites from Blacks and Grays

The original images have a mixture of “white”, 
“black”, and “gray” pixels.  We would like to find a 
pixel intensity value to use as a threshold so that 
the image can be represented in just pure white 
and pure black pixels.

In this example we start with an image, create the 
histogram of the image’s intensity values, choose 
a threshold at the lower edge of the big 
background lump by inspection.  Here it is 
represented by the white line on the histogram. 
Then we create a binarized image by dividing the 
original image at the threshold.



  

 

A Solution

  Fit a Kumaraswamy Distribution to White pixels
  Select a Confidence Level
  Find Corresponding Pixel Level

But how can we find the lower edge of the background 
automatically?

We can fit an analytic function, in this case the 
Kumaraswamy Distribution, to the background data.  This 
means that we transform some histogram bins to the zero to 
one range required for the distribution, and then find control 
parameters of a Kumaraswamy  distribution which produce 
the best fit to the range of intensities in the “white” 
background.  Then, having a specific distribution, we find the 
fitted distribution value which is less than 99% of the “white” 
background pixel intensities.  This value, after suitable 
transformation back to pixel intensities, becomes the desired 
background edge threshold.  I will describe the 
Kumaraswamy Distribution later.  Now let’s see how well it 
works.



  

 

Sample 1

Here is the example I just showed with the 
computed Kumaraswamy distribution 
superimposed.  For many images there are less 
than 10% of the pixels that are “black” or “gray.”  
So I use the 10 percentile and the 99 percentile 
values from the histogram to map to the zero to 
one range of the distribution.

The 1 percentile value of the distribution maps to 
a value very close to the threshold which was 
manually chosen earlier.  The binarized results 
look very similar.



  

 

Sample 2

This is a low contrast handwriting example.  Once 
again the 10 percentile and the 99 percentile 
histogram values are used to map to the zero to 
one range.  The resulting binarized image is sort 
of OK.



  

 

Sample 3

This is an example where the white values in the 
histogram do not match up with a Kumaraswamy 
distribution shape.  Too many of the pixels have 
exactly the same value.  The resulting binarized 
image leaves something to be desired.  The 
background edge method only works well when the 
assumptions are valid.



  

 

Sample 4

This is an example where there is a high 
percentage of black/gray pixels.  In this case the 
10 percentile value does not work for the lower 
limit of the mapping, so I use the Otsu threshold 
as the lower bound.  In the previous examples the 
Otsu threshold was lower than the 10 percentile 
point, so I use whichever is higher.

The resulting binarized image matches quite well, 
but a couple of loop centers got blackened.



  

 

Why the Kumaraswamy Distribution?

 It is finite
 It is computationally easy
 It looks like the actual data

There are a great many possible functions that could be 
used to fit the background data.  Why did I choose the 
Kumaraswamy Distribution.

Unlike almost all probability distributions, the 
Kumaraswamy distribution is defined over the finite 
interval zero to one.  There are no infinities getting in 
the way.

The frequently cited example of another finite interval 
distribution is the Beta Distribution.  It is defined in 
terms of Gamma functions and everything about it is a 
computational nightmare.  As shown later the 
Kumaraswamy distribution is easy to compute.

When one looks at histograms of these type of images, 
the big “white” peak looks like the Kumaraswamy 
distribution Probability Density Function.



  

 

The Kumaraswamy Distribution

1−(1−xa)
b

abx (a−1) (1−xa)(b−1 )

1−(1− y(1 /b ))(1/a )

 Cumulative Distribution Function

 Probability Density Function

 Inverse CDF

Constraints

PDF of a=20, b=3

x∈[0,1 ] ,a≻0, b≻0

So what is the Kumaraswamy Distribution?  The 
Kumaraswamy distribution is defined based on a 
cumulative distribution function and has two 
parameters “a” and “b” which must be greater than 
zero.  The derivative of the CDF produces the 
probability density function.  The CDF is easy to invert 
and this inverse is the basis for determining the 
background edge threshold. The range of permissible 
values for “x” or for “y” is zero to one.



  

 

Fitting to Obtain the Parameters

  Start with the quartile values 0 < q1 < q2 < q3 < 1
  Get the initial approximations

a0=
log (1−1/22 /7 )−log (1−31 /7 /22/7 )
log (q3 /q 1)

=
1.5

log (q3 /q 1)

b0=
log (2)

log (1 /(1−q2a0))

  Iterate new values until close enough

ai+1=
log (1−(1 /4 )

1 /bi)−log(1−(3 /4 )
1 /bi)

log (q3 /q1)

bi+1=
log (2)

log (1 /(1−q2ai+1))

How are the “a” and “b” parameters determined so 
that the resulting function best fits some data.  
Starting with a histogram of the intensity values 
which occurred in an image, the first step is to trim off 
those “black” values that are definitely not part of the 
“white” background, and then transform the results to 
the range zero to one.  Then the quartile values are 
determined from what is left.  These values are then 
used iteratively to obtain progressively better 
estimates of the “a” and “b” parameters.  This 
process seems to converge to within about 1% within 
3 to 5 passes through the equations.



  

 

Conclusion

 The background edge threshold method seems 
to work quite well.

 It is easy to implement
 It may be useful for you

Having used this method of finding the background edge 
threshold on many thousands of images from the US 1930 
Census, the background edge method described here seems 
to do a good job in at least 98% of the cases.

It is not difficult to program nor costly to compute.

Because it has been useful for me, I present it for your 
consideration.


