
A Binarization Threshold Method for
Images of Filled-out Forms

By
Randall Christensen

Image Assumptions

 Image consists of “white”, “black”, and “gray”
 Most of the pixels are “white” background
 Some of the pixels are “black” / ”gray”
 Little illumination gradient is present
 Sufficient contrast exists

The Binarization Problem

 Black, White, and Gray
 Separate Whites from Blacks and Grays

A Solution

 Fit a Kumaraswamy Distribution to White pixels
 Select a Confidence Level
 Find Corresponding Pixel Level

Sample 1

Sample 2

Sample 3

Sample 4

Why the Kumaraswamy Distribution?

 It is finite
 It is computationally easy
 It looks like the actual data

The Kumaraswamy Distribution

1−(1−xa)
b

abx (a−1) (1−xa)(b−1)

1−(1− y(1 /b))(1/a)

 Cumulative Distribution Function

 Probability Density Function

 Inverse CDF

Constraints

PDF of a=20, b=3

x∈[0,1] ,a≻0, b≻0

Fitting to Obtain the Parameters

 Start with the quartile values 0 < q1 < q2 < q3 < 1
 Get the initial approximations

a0=
log (1−1/22 /7)−log (1−31 /7 /22/7)
log (q 3 /q 1)

=
1.5

log (q 3 /q 1)

b0=
log (2)

log (1 /(1−q2a0))

 Iterate new values until close enough

ai+1=
log (1−(1 /4)

1 /bi)−log(1−(3 /4)
1 /bi)

log (q3 /q 1)

bi+1=
log (2)

log (1 /(1−q 2ai+1))

Conclusion

 The background edge threshold method seems
to work quite well.

 It is easy to implement
 It may be useful for you

A Binarization Threshold Method for
Images of Filled-out Forms

By
Randall Christensen

There is nothing really new in this presentation. The only
thing that is unusual is that we are going to talk about a
probability distribution that you have probably never heard
of before, the Kumaraswamy Distribution. The reason I
want to talk about it is that, having used it in conjunction
with many thousands of images from the U.S. 1930
Census, I have found that it works very well for finding the
lower edge of the background pixel values.

Image Assumptions

 Image consists of “white”, “black”, and “gray”
 Most of the pixels are “white” background
 Some of the pixels are “black” / ”gray”
 Little illumination gradient is present
 Sufficient contrast exists

By a filled-out form I mean that the image consists of mostly
“white” background, has some printed lines, and some hand-
written / typed information in it. The “white” background
needs to have similar properties across the entire image.
There needs to be enough contrast so that discreet pixel
values are not too clumped.

The reason for doing binarization at all, is that when we are
searching for structures in an image, like a line, the
computations are often less ambiguous if the input data
represents an estimate of whether a pixel is part of the
structure or not. Hence the value of using the binarization
process.

The Binarization Problem

 Black, White, and Gray
 Separate Whites from Blacks and Grays

The original images have a mixture of “white”,
“black”, and “gray” pixels. We would like to find a
pixel intensity value to use as a threshold so that
the image can be represented in just pure white
and pure black pixels.

In this example we start with an image, create the
histogram of the image’s intensity values, choose
a threshold at the lower edge of the big
background lump by inspection. Here it is
represented by the white line on the histogram.
Then we create a binarized image by dividing the
original image at the threshold.

A Solution

 Fit a Kumaraswamy Distribution to White pixels
 Select a Confidence Level
 Find Corresponding Pixel Level

But how can we find the lower edge of the background
automatically?

We can fit an analytic function, in this case the
Kumaraswamy Distribution, to the background data. This
means that we transform some histogram bins to the zero to
one range required for the distribution, and then find control
parameters of a Kumaraswamy distribution which produce
the best fit to the range of intensities in the “white”
background. Then, having a specific distribution, we find the
fitted distribution value which is less than 99% of the “white”
background pixel intensities. This value, after suitable
transformation back to pixel intensities, becomes the desired
background edge threshold. I will describe the
Kumaraswamy Distribution later. Now let’s see how well it
works.

Sample 1

Here is the example I just showed with the
computed Kumaraswamy distribution
superimposed. For many images there are less
than 10% of the pixels that are “black” or “gray.”
So I use the 10 percentile and the 99 percentile
values from the histogram to map to the zero to
one range of the distribution.

The 1 percentile value of the distribution maps to
a value very close to the threshold which was
manually chosen earlier. The binarized results
look very similar.

Sample 2

This is a low contrast handwriting example. Once
again the 10 percentile and the 99 percentile
histogram values are used to map to the zero to
one range. The resulting binarized image is sort
of OK.

Sample 3

This is an example where the white values in the
histogram do not match up with a Kumaraswamy
distribution shape. Too many of the pixels have
exactly the same value. The resulting binarized
image leaves something to be desired. The
background edge method only works well when the
assumptions are valid.

Sample 4

This is an example where there is a high
percentage of black/gray pixels. In this case the
10 percentile value does not work for the lower
limit of the mapping, so I use the Otsu threshold
as the lower bound. In the previous examples the
Otsu threshold was lower than the 10 percentile
point, so I use whichever is higher.

The resulting binarized image matches quite well,
but a couple of loop centers got blackened.

Why the Kumaraswamy Distribution?

 It is finite
 It is computationally easy
 It looks like the actual data

There are a great many possible functions that could be
used to fit the background data. Why did I choose the
Kumaraswamy Distribution.

Unlike almost all probability distributions, the
Kumaraswamy distribution is defined over the finite
interval zero to one. There are no infinities getting in
the way.

The frequently cited example of another finite interval
distribution is the Beta Distribution. It is defined in
terms of Gamma functions and everything about it is a
computational nightmare. As shown later the
Kumaraswamy distribution is easy to compute.

When one looks at histograms of these type of images,
the big “white” peak looks like the Kumaraswamy
distribution Probability Density Function.

The Kumaraswamy Distribution

1−(1−xa)
b

abx (a−1) (1−xa)(b−1)

1−(1− y(1 /b))(1/a)

 Cumulative Distribution Function

 Probability Density Function

 Inverse CDF

Constraints

PDF of a=20, b=3

x∈[0,1] ,a≻0, b≻0

So what is the Kumaraswamy Distribution? The
Kumaraswamy distribution is defined based on a
cumulative distribution function and has two
parameters “a” and “b” which must be greater than
zero. The derivative of the CDF produces the
probability density function. The CDF is easy to invert
and this inverse is the basis for determining the
background edge threshold. The range of permissible
values for “x” or for “y” is zero to one.

Fitting to Obtain the Parameters

 Start with the quartile values 0 < q1 < q2 < q3 < 1
 Get the initial approximations

a0=
log (1−1/22 /7)−log (1−31 /7 /22/7)
log (q3 /q 1)

=
1.5

log (q3 /q 1)

b0=
log (2)

log (1 /(1−q2a0))

 Iterate new values until close enough

ai+1=
log (1−(1 /4)

1 /bi)−log(1−(3 /4)
1 /bi)

log (q3 /q1)

bi+1=
log (2)

log (1 /(1−q2ai+1))

How are the “a” and “b” parameters determined so
that the resulting function best fits some data.
Starting with a histogram of the intensity values
which occurred in an image, the first step is to trim off
those “black” values that are definitely not part of the
“white” background, and then transform the results to
the range zero to one. Then the quartile values are
determined from what is left. These values are then
used iteratively to obtain progressively better
estimates of the “a” and “b” parameters. This
process seems to converge to within about 1% within
3 to 5 passes through the equations.

Conclusion

 The background edge threshold method seems
to work quite well.

 It is easy to implement
 It may be useful for you

Having used this method of finding the background edge
threshold on many thousands of images from the US 1930
Census, the background edge method described here seems
to do a good job in at least 98% of the cases.

It is not difficult to program nor costly to compute.

Because it has been useful for me, I present it for your
consideration.

