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Abstract 

Before one can begin applying automatic transcription 

processes to a document image, a line segmentation algorithm 

usually must be applied first in order to identify the individual text 

lines upon which recognition will be performed.  Most line 

segmentation algorithms use standard image processing techniques 

and/or statistics to identify inking activity in the image.  

Unfortunately, these algorithms have no awareness of inking that is 

intentional (such as that written by an author) versus that which is 

merely background, darkness of copy, noise, etc. Moreover, the 

algorithms themselves cannot always tell when lines have been 

over- or under-segmented. Neural networks can be taught to learn 

such distinctions.  We have trained a neural process which can 

detect image line phenomena and can be used to improve automatic 

line segmentation.  To the best of our knowledge, no other 

researchers have demonstrated similar processes.   We observe 

definite accuracy gains using our neurally-enhanced line segmenter 

over a previous high quality line segmenter, and we believe such 

improvements will apply when using other line segmentation 

algorithms.   

1. Background on Line Segmentation 
When transcription of document images is a user’s goal, it is almost 

always a requirement to first transform the document into the 

sequence of its textual lines so that subsequent processing can then 

proceed on a line-by-line basis.  The process of transforming a 

document into its constituent lines is referred to as line 

segmentation.  The vast majority of line segmentation techniques 

leverage either statistics or common image processing techniques 

which include projection-based methods, the finding of connected 

components, smearing approaches, clustering, and Hough 

transforms (see, for examples [1], [2]).  Other techniques also exist 

which try to use more sophisticated approaches such as peak and 

trough detections and carving seams between them, hidden Markov 

model-like analyses, and graphical approaches (see [1], [3], [4]).  

These methods provide good or even excellent results depending on 

the image collection, especially when collections are small or 

homogeneous.   

Yet when the images in a collection number in the millions or 

billions and are quite diverse, as in a genealogical data set, typical 

line segmentation algorithms fail to account for many of the 

phenomena that will occur.  This is largely because these systems 

are designed to identify contrastive areas of pixel darkness and/or 

pixel connectivity as opposed to trying to capture what we will refer 

to here as deliberate marks: markings on the page which were 

intentionally placed there by the document’s author.   

Let us consider some situations where line segmentation can be 

problematic for activity-based or connectivity-based algorithms: 

a)  In the presence of faint copy where inking is weak, systems that 

rely on connectivity get confused because single lines of text can 

appear as disconnected. This can result in falsely detecting 

multiple lines.  Activity detectors, on the other hand, may treat 

these areas as having insufficient information to even predict the 

appearance of some of the lines.   

b) Speckle noise can cause challenges for a connectivity-based 

algorithm since it may be treated as myriad regions of 

disconnected components and thus over-generate lines.  

c) If textual lines have significant overlap (where, say, the 

descenders from one line intersect frequently with ascenders 

from below), connectivity-based algorithm may falsely merge 

these lines together.  Activity-based algorithms, on the other 

hand, can treat such regions of overlap as if they were additional 

lines since there may be sufficient pixel darkness to warrant it. 

d) When the image is copied from a book or on a black background 

resulting in the image having side regions with dark vertical 

streaks, the activity algorithms can end up over-generating lines 

if the streaks are of variable thicknesses. 

e) If the slope of the text lines drifts from one side of the page to the 

other, both kinds of algorithms can either over-generate lines or 

can produce hypothesized lines where the left half and right half 

of the lines actually are drawn from different textual lines. 

This list can be extended. Yet it suffices as an illustration that the 

base algorithms, absent a search for deliberate marks, are likely to 

have challenges with certain kinds of documents.   

In this paper, we demonstrate that deep neural networks can be 

built which can identify deliberate marks and which can be used to 

improve a system’s ability to properly find textual lines.  We 

demonstrate through this effort that not only is the error rate of line 

segmentation reduced through our neural processes, but we actually 

train a handwriting recognition system on a very large corpus of US 

legal documents and show that the resultant line segmentation 

improves performance by 1.2% absolute (7.5% relative reduction in 

error). 

2. DNNs to Count Lines 
Prior to the work described in this paper, we had created a line 

segmentation algorithm (which we will refer to here as PreDNN) 

which leverages many of the leading techniques mentioned in 

Section 1. The base components of our algorithm are described 

elsewhere (see [5]), but suffice it to say that it uses multi-swath 

projections to identify activity peaks, dynamic programming to 

carve seams between those  activity peaks, and overlap of connected 

components to detect falsely merged lines.  These processes were 

then extended using statistical analyses to find and remove the over-

generation of detected peaks and to trim out falsely carved seams.  

The resultant algorithm seems to have quite high on a huge 

collections of generic printed documents and has accuracy (perhaps 

about 85%-90%) on a collection of tens of thousands of handwritten 

document spanning four centuries.  We expect that the results of the 

PreDNN system rival those of state-of-the-art and we have observed 

that they are quite usable. That said, leaving out up to 15% of a 

document’s content is undesirable.   

2.1. Line Count Cells 
Deep neural networks provide a potential means to overcome some 

of these gaps. We reasoned that if we could build a neural network 

which, given a snippet of an image, could predict if the snippet 

contains no text lines, fractions of a line, multiple lines, or exactly 



 

 

one line, then such a network could be used to either completely 

perform line segmentation or to improve upon an existing line 

segmentation algorithm. 

To test this hypothesis, we assembled a mixed corpus 

consisting of printed Latin-script texts, Chinese print, and Latin-

script handwritten documents.  From these, we automatically 

generated a huge collection of image snippets of variable sizes 

whose edges were not necessarily straight.  These snippets were then 

condensed down into small cells of size 30 pixels by 30 pixels. We 

tagged each of these 30x30 cells with one of seven different tags 

based on the number of lines observed in each cell.  As shown in 

Figures 1a-g, these snippets fall into categories of:  

 

                            
 Fig1.a      Fig1.b      Fig1.c       Fig1.d     Fig1.e     Fig1.f     Fig1.g 

 

(a) no-text-lines, (b) single-text-line, (c) vertical-bar-only, (d) less-

than-one-text-line, (e) two fragment lines, (f) more-than-one-but-

fewer-than-two, and (g) two-plus-lines.  The colors that are selected 

here are deliberate in that they will be used throughout this paper in 

colorized images representing the various classifications. 

Our collection of tagged cells currently consists of 70.5K 

different images of which 65,259 are used for training and 5,277 are 

used for testing.  No specific effort was made to have a comparable 

number of each of the seven classes of cells, so the final distribution 

is reflective of what is observed in practice.  Table 1 shows the 

actual distribution by category in both the training and testing sets: 

 

Table 1: Distribution of Counts of Tagged Cells 

CATEGORY # in TRAIN # in TEST 

no-text-lines 7330 625 

single-text-line 12651 848 

vertical-bar-only 703 89 

less-than-one-text-line 16813 1098 

two fragment lines 5027 407 

more-than-1/fewer-than-2 8573 801 

two-plus-lines 14162 1409 

 

 An interesting thing about tagging cells in the way specified is 

that the tags remain the same even if the cells are flipped with 

respect to the y-axis, or if they are rotated 180 degrees.  That means 

that if we consider these four permutations, we can likewise 

multiply the size of our collection by four resulting in a training set 

with 280K elements and a test set with 21K. 

2.2. Training a DNN for Line Counts 
With training cells available, we can now train a deep neural 

network (DNN) to try to predict the line count of future image cells.   

To train our DNN, we make use of Google’s open source 

Tensorflow [6] engine.  Additionally, the Tensorflow developers 

created a “recipe” using convolutional neural networks (CNN) as 

applicable to the MNIST digit-recognition task which we have 

modified for our task.  We use the same number of layers in our 

network as they have, but we use a kernel size of 3, and our first 

through third hidden layers have, respectively, 16, 32, and 216 

nodes. Each of our layers are smaller than those of the recipe, but 

this is beneficial for recognition speed (which seems essential for 

our task). 

Our particular DNN topology yields an average tagging 

accuracy of 91%.  We can get up to 2% better prediction accuracy 

by doing one of the following: (a) on a per cell basis, apply the DNN 

predictor to each of the four legal permutations of that cell and vote, 

or (b) create cells from overlapping rectangular regions and keep the 

result if the prediction for both regions agree or otherwise use the 

prediction of the overlap region as a tie breaker.   Since 

computational cost is a factor, method (a) is somewhat less desirable 

because one must perform four times more computation for a 2% 

gain.  On the other hand, method (b) can be performed for only about 

10% more cost than just doing cell-by-cell evaluation because the 

rectangles take the place of the cells and the tie breakers only need 

to be applied when there is disagreement.  For this reason, we use 

method (b) throughout our computations unless stated. 

3. Take 1: Line Counters As Line Segmenters 
Once we have a DNN-based line count predictor, the next question 

is: how does one best apply these to the task of line segmentation?  

One option is to let the DNNs do the entire process. The thought 

here is that if the predictions are high quality, then one should be 

able to split up an image into a bunch of non-overlapping regions.  

Then, for a given region, if the DNN predicts that there is more than 

one line, it should be feasible to do a kind of binary search of splits 

through that cell until the system predicts that one of the splits has 

exactly one row.  Then one can recurse over the remaining portion 

of that region until all the individual lines are detected.  On the flip 

side, if the system predicts that there is less than one line, one should 

be able to merge with residuals from above or below the region in 

order to form a single cell. 

 We took a snippet of a newspaper image, split it into 9x22 non-

overlapping regions, converted each region to a 30x30 cell, and 

made a DNN prediction on each cell to yield the image in Figure 2.  

The colors shown in the image are those indicated above in the 

descriptions of Figures 1a-g. 

 

   
Figure 2: Image tagged completely with neural decisions 

 

 We next applied the recursive splitting method as described on 

any regions which were tagged as having more than one line.  The 

result is shown in Figure 3. Encouragingly, we see that this process 

is able to segment out some textual lines (i.e.,  lines that are 

consistently green and pink).  On the other hand, we also notice that 

many of the splits result in disconnected lines and we see that some 

of the narrow residual regions are tagged incorrectly.  Moreover, if 

this image had drifting text lines as opposed to the nice horizontal 

ones we observe, it is unclear that splitting each cell using horizontal 

cuts would even be able to properly segment the image.  To top it 

off, this process is computational expensive because every cell 

needs to be split repeatedly and both the top and bottom splits needs 

to be evaluated after each split.    



 

 

 
Figure 3: Post-splitting image 

 

 This technique may have some merit, but for the moment, it 

seems that its challenges outweigh those merits.  We need to ensure 

that we have a process that is fast enough to use, but a process which 

is also less sensitive to errors in cell-level predictions or to non-

horizontal text. So we try another approach. 

4. Take 2: Line Counters As Supplementer 
Suppose, then, that rather than trying to use the neural cells to 

segment the whole image that we use them to try to identify and fix 

problem areas as a follow-on from a normal line segmentation 

process.  This has a number of benefits.  For one, the basic 

algorithms tend to be fast, so this should reduce the time 

requirements.  Moreover, they are not as affected by the “horizontal-

ness” of the text.  Likewise, if the system says the original lines are 

appropriate, no subsequent work is required but we have much more 

confidence in the original decision.   

4.1. Neural Cells for Error Detection / Greenness 
With this in mind, we run PreDNN on raw images to detect potential 

lines.  Although PreDNN does a good job with line segmentation, 

we show in Figure 4 an image with bad PreDNN segmentation so 

that we can later see the effects of the neural processing.  This 

handwritten document does have drift on some lines and some 

ascender-descender regions which make the PreDNN system 

believe it should generate more lines than should exist.  But 

whatever the reason, there are line segmentation errors which would 

affect recognition and we would like to remove those. 

 

Figure 4: Example of bad line segmentation from PreDNN 

 To take advantage of the neural predictions, we treat each 

region delineated by a line as a swath which we slice into 

overlapping cells whose tops and bottoms follow the contours of the 

line segments and the right and left edges are parallel and vertical.  

These odd-shaped regions are repackaged to become 30x30 cells 

and the neural net (with overlapping and voting) is used to predict 

the content of each cell.  The outcome of this is shown in Figure 5.  

 

Figure 5: PreDNN followed by Neural Coloring 

 

As can be observed, the neural network is able to identify, with 

reasonable accuracy, background regions (pink), single lines of text 

(green), and, in this case, lines that appear to be split (blue).  If we 

consider weighting the cells with pink or purple as 0.1 and 

everything else as 1.0, then green+pink+purple here represents 

69.9% of the cells.  We will call this metric the “greenness.”  We 

would like the greenness to be much closer to 100%, so even before 

making any corrections, we still know that the initial line 

segmentation yielded a fairly poor result.  (It should also be 

mentioned that the dark shading within a cell near the line 

boundaries is an effect which we automatically add based on a 

computation of the cell’s pixel darkness and its proximity to the line 

boundary.)   

4.2. Neural Cells for Error Correction 
Although error detection is potentially useful, especially if humans 

can be used for fixing bad line segmentations, it would be beneficial, 

where possible, for the system to fix itself.  Part of the challenge 

with this is in the recognition that we do not have perfect cell 

prediction, which means that many of the so-called errors are not 

line segmentation errors at all, but rather, are cell prediction errors.  

So until the cell prediction accuracies increase, we need to limit 

automatic correction to those areas which appear consistently to be 

bad.  This means we will predominantly only be able to fix full or 

partial lines that appear to be broken. 

We saw in Figure 5 that there were a number of rows where 

there are quite a few blue cells in the row.  This is likely indicative 

of over-segmentation.  If there is over-segmentation, we would 

expect that two juxtaposed rows would have a high frequency of 

blue cells (or even pink ones in regions of the image where we might 

hope to see green).  If there were under-segmentation, we would 

expect a single row to have more reds, oranges, or yellows. 

Using these observation, we created two sets of formulas – one 

for potential fusion and one for potential splitting – where we count 

and weight the frequency of certain types of cell juxtapositions and 



 

 

decide whether we should do subsequent analysis.  For example, if 

a cell is blue as is its vertical neighbor, these facts will contribute to 

a potential need for fusion.  If the cell is blue and its vertical 

neighbor is pink, this also contributes, though less strongly, to the 

potential need for fusion.  On the other hand, if the cell is green as 

is its vertical neighbor, this suggest that fusion is potentially 

undesirable.  If the vertical neighbor is green but this cell is red, then 

perhaps line splitting is in order.   

 After each formula is applied to each row pair, the scores from 

those formulas are sorted and the highest-scoring outcomes are 

processed first.  If the formula indicates that merging should 

potentially happen, the two rows are merged offline; or if splitting 

should happen, PreDNN is applied to that row offline.  (By “offline” 

we mean that these images are handled separately from the original 

image.)  These offline swaths are re-cellularized, and the cells are 

colorized.  If the offline colored swaths are “greener” than the 

original swaths had been, the offline swaths are introduced into the 

main image and the original line segmentations are discarded. 

This process provides images which almost consistently have 

equal or better line segmentation than original.  Figure 6 shows the 

outcome of this process as applied to the data in Figure 5.   These 

updates, which we will call PostDNN, are now used as the improved 

line segmentation.  Note that greenness is now 100% giving high 

confidence that the image is properly segmented – or, at least, that 

it has improved. We have seen that the greenness measure actually 

provides a very reasonable estimate of how well the line 

segmentation has worked; and the updated line segmentation 

improves recognition capability.   

 

Figure 6: PostDNN outcomes 

4.3. Still on the To-do List? 
This ability to repair fully-merged and fully-fractured lines is a great 

benefit because these situations are the ones that likely represent the 

largest losses in overall recognition accuracy.  When a line is split 

in two, the best case scenario for recognition is that no words will 

be recognized, and the worst is that a bunch of spurious words will 

be produced.  When two lines are merged, a recognition system will 

obviously fail to recognize the words from either line, and has a 

pretty reasonable chance of reporting spurious elements.  Thus, we 

would expect that the error fixes we have described in the PostDNN 

system should result in reasonable improvements in recognition 

capability. 

That said, there are a number of situations where major or 

frequent errors are detected but for which we still do not quite know 

how to improve the lines.  The fact that we are only getting 91-93% 

accuracy in cell tagging precludes us from fixing all of the potential 

issues since many of those issues are not line segmentation errors at 

all, but are just faulty cell-tagging.  Yet there are still situations 

where there are numerous cells which are neither green nor pink, 

and yet it is still unclear how to move forward. We identify them 

here for completeness but place them in the arena of “still-to-do”: 

 

[a] Line Bumping: Perhaps the most common phenomenon in terms 

of errors is the occurrence of lines which are mostly correct but 

which, at some point, cut through some words. We have introduced 

functionality into the algorithm which allows the system to “bump” 

a line above or below its current location with the intent of avoiding 

character splitting.  However, at this point, we have not found this 

approach particularly helpful because the neural prediction accuracy 

is not close enough to 100% -- meaning that many times the so-

called corrections end up breaking something that was accurate but 

mislabeled.  Figure 7, for example, shows an image where the lines 

have sliced through some of the words (the “L” in Letters and the 

“T” is Testamentary).   The blue cells identify the presence of 

potential issues, and the dark shading, which was mentioned earlier, 

suggests that the blue areas probably belong to the rows below them.  

However, in this case, the green cells adjoining the blue cells are 

properly tagged since the strokes in those cells are fully bounded 

above and below by the corresponding line segments.  This makes 

it difficult to know how to perturb the line correctly. 

 

Figure 7: Neurally-Colored Image When Line Bisects Words 

 
 

[b] Line straightening: A more concerning problem is when the 

image has warping in some way such that the text lines have large 

curvature.  In such cases, line segmentation algorithms can fail.  The 

neural prediction is an excellent “error detector” in that it can 

identify clearly that something is amiss in the line segmentation.  In 

Figure 8, for example, we can see that the left side of the image has 

almost no green cells, whereas the right side of the image has a 

number of columns where most of the cells within the column are 

green or pink.  Despite this beneficial error detection, we have yet 

to identify a clear mechanism which would allow us to convert an 

initial segmentation as in Figure 8 into a well-segmented image. 

 

Figure 8: Neurally-Colored Image with Curved Lines 

 



 

 

[c] Image “Unwarping”:  The last major issue which still needs 

to be resolved is that of images that are wrinkled like a flag blowing 

in the wind.  An example of this is seen in Figure 9.  As can be seen 

here, the left and right sides of the image have areas with mostly 

green cells, but in the center, there appears to be a disruptive region 

where the cells are almost all non-green.  As with curved lines, the 

neural components are able to detect the presence of errors, but we 

have yet to decide on a process for fixing such situations. 

 

Figure 9: Neurally-Colored Image when Image is Warped  

 

5. Evaluating Segmentation Improvements 
There are three ways in which we can evaluate any improvements 

in line segmentation between the PreDNN and the PostDNN.  We 

could tag a truth set of lines and determine how much better 

PostDNN is as compared to those, but this is an expensive endeavor.  

Another mechanisms is to compare the amount of “greenness” 

between the two data sets.  A third option is to run recognition with 

PreDNN and PostDNN and see what happens to recognition.   The 

second option is convenient and easy, so we will do that here.  On 

the other hand, since it is not a direct measure and since the system 

we are creating here tries to directly improve greenness, it is 

somewhat “cheating” to only evaluate greenness.  So we will also 

use the third mechanism and see if the PostDNN has any added 

benefit on what we really care about: recognition performance. 

5.1. Evaluation by Comparing Greenness 
To compare greenness, we selected 219 images of documents that 

were either English newprint or English handwriting.  Since 

handwriting has more issues for line segmentation than print, there 

is a predominance of handwriting in our set.  Other than that bias, 

the images were drawn mostly randomly.  Table 2 shows various 

elements regarding “greenness” in both the PreDNN and in the 

PostDNN system.  The first five columns show the number of 

documents that have certain levels of greenness and the last row 

shows the average percentage of greenness.  Note that the average 

greenness increased by 4.6% absolute.  This is substantially better!   

 

Table 2: “Greenness” Comparisons: Before and After 

 PreDNN PostDNN 

# of 95%+ green 69 92 

# of 90-94% green 47 58 

# of 80-89% green 52 46 

# of 70-79% green 31 14 

# Below 70% green 20 9 

Average Greenness 86.88% 91.30% 

 

That said, there is still clearly room for further improvement.  

Though 100% may not be attainable, it is likely that one could 

continue to move the amount of greenness by at least 5% absolute if 

the neural decisions were more correct and if one had proper 

mechanisms for handling the various phenomena that might arise.  

By the same token, it is not clear how much that additional greenness 

– or the amount we have recovered up to this point -- relates to better 

accuracy.  So we consider that next. 

5.2 Evaluation by Comparing Recognition 
The ultimate proof of the effectiveness of this approach is to see how 

it actual plays out in terms of actual recognition rates.  Doing this 

also allows one to get some sense of how greenness increases relate 

to increases in accuracy – if at all.   

 To evaluate this, we created a test collection of 565 US legal, 

fully-prose documents which are drawn from hundreds of US 

counties across a four-hundred-year time span.  This set contains 

137K words and is very representative of the kinds of documents 

that might be found in a genealogical collection.  We also trained a 

handwriting recognition system using a separate, but similar, set of 

documents.  We applied our recognition system to the test 

documents using line segmentation that comes both from the 

PreDNN and the PostDNN line segmenters.  The results are shown 

in Table 3. 

 

Table 3: Handwriting Recognition: Before and After 

 PreDNN PostDNN 

Word Accuracy 83.9% 85.1% 

 

 As is clear from Table 3, the PostDNN system is better 

accuracy-wise than the PreDNN system.  In order to attain this 

accuracy gain, we needed to expend an additional 19% more time in 

the line segmentation phase.  Yet there end up being fewer false 

lines, which saves 11% in recognition time.  Consequently, for a 

comparable computation costs, we get a nice 1.2% absolute (7.5% 

relative) reduction in recognition errors using this process. 

6. A Word on Other Neural Techniques 
Before concluding, it should be mentioned that this paper does not 

represent the first paper where neural processes have been used to 

try to perform line segmentation.  Interestingly, though, despite the 

overwhelming success of deep neural networks, there are 

surprisingly few in the line segmentation arena.   Yet one such paper 

is worth noting by Bluche, et al [7]. In it, the authors actually 

attempts to do handwriting recognition without the benefits of any 

line segmentation and instead uses a multi-directional LSTM for 

recognition instead of bi-directional LSTM.  This work is 

noteworthy in that the author is able to get the system to perform 

recognition, but they appear to suffer a 60% relative drop in 

accuracy – which is certainly something that one could not afford in 

practice.  Consequently, we did not use those techniques for our 

work, but which are definitely interested in any follow-on work. 

7. Conclusions 
In this paper, we have demonstrated that neural cells can be used to 

not only detect errors in high-quality line segmentation algorithms, 

but they can also be used for correcting such errors.  We were able 

to show an approximate 5% improvement in line segmentation 

which yielded 1.2% accuracy gain in handwriting recognition.  We 

think these approaches could also be applied to others’ line 

segmentation approaches. 
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