

Using Neural Cells to Improve Image Textual Line Segmentation

Patrick Schone; Family Search, Salt Lake City, Utah.

Abstract

Before one can begin applying automatic transcription

processes to a document image, a line segmentation algorithm

usually must be applied first in order to identify the individual text

lines upon which recognition will be performed. Most line

segmentation algorithms use standard image processing techniques

and/or statistics to identify inking activity in the image.

Unfortunately, these algorithms have no awareness of inking that is

intentional (such as that written by an author) versus that which is

merely background, darkness of copy, noise, etc. Moreover, the

algorithms themselves cannot always tell when lines have been

over- or under-segmented. Neural networks can be taught to learn

such distinctions. We have trained a neural process which can

detect image line phenomena and can be used to improve automatic

line segmentation. To the best of our knowledge, no other

researchers have demonstrated similar processes. We observe

definite accuracy gains using our neurally-enhanced line segmenter

over a previous high quality line segmenter, and we believe such

improvements will apply when using other line segmentation

algorithms.

1. Background on Line Segmentation
When transcription of document images is a user’s goal, it is almost

always a requirement to first transform the document into the

sequence of its textual lines so that subsequent processing can then

proceed on a line-by-line basis. The process of transforming a

document into its constituent lines is referred to as line

segmentation. The vast majority of line segmentation techniques

leverage either statistics or common image processing techniques

which include projection-based methods, the finding of connected

components, smearing approaches, clustering, and Hough

transforms (see, for examples [1], [2]). Other techniques also exist

which try to use more sophisticated approaches such as peak and

trough detections and carving seams between them, hidden Markov

model-like analyses, and graphical approaches (see [1], [3], [4]).

These methods provide good or even excellent results depending on

the image collection, especially when collections are small or

homogeneous.

Yet when the images in a collection number in the millions or

billions and are quite diverse, as in a genealogical data set, typical

line segmentation algorithms fail to account for many of the

phenomena that will occur. This is largely because these systems

are designed to identify contrastive areas of pixel darkness and/or

pixel connectivity as opposed to trying to capture what we will refer

to here as deliberate marks: markings on the page which were

intentionally placed there by the document’s author.

Let us consider some situations where line segmentation can be

problematic for activity-based or connectivity-based algorithms:

a) In the presence of faint copy where inking is weak, systems that

rely on connectivity get confused because single lines of text can

appear as disconnected. This can result in falsely detecting

multiple lines. Activity detectors, on the other hand, may treat

these areas as having insufficient information to even predict the

appearance of some of the lines.

b) Speckle noise can cause challenges for a connectivity-based

algorithm since it may be treated as myriad regions of

disconnected components and thus over-generate lines.

c) If textual lines have significant overlap (where, say, the

descenders from one line intersect frequently with ascenders

from below), connectivity-based algorithm may falsely merge

these lines together. Activity-based algorithms, on the other

hand, can treat such regions of overlap as if they were additional

lines since there may be sufficient pixel darkness to warrant it.

d) When the image is copied from a book or on a black background

resulting in the image having side regions with dark vertical

streaks, the activity algorithms can end up over-generating lines

if the streaks are of variable thicknesses.

e) If the slope of the text lines drifts from one side of the page to the

other, both kinds of algorithms can either over-generate lines or

can produce hypothesized lines where the left half and right half

of the lines actually are drawn from different textual lines.

This list can be extended. Yet it suffices as an illustration that the

base algorithms, absent a search for deliberate marks, are likely to

have challenges with certain kinds of documents.

In this paper, we demonstrate that deep neural networks can be

built which can identify deliberate marks and which can be used to

improve a system’s ability to properly find textual lines. We

demonstrate through this effort that not only is the error rate of line

segmentation reduced through our neural processes, but we actually

train a handwriting recognition system on a very large corpus of US

legal documents and show that the resultant line segmentation

improves performance by 1.2% absolute (7.5% relative reduction in

error).

2. DNNs to Count Lines
Prior to the work described in this paper, we had created a line

segmentation algorithm (which we will refer to here as PreDNN)

which leverages many of the leading techniques mentioned in

Section 1. The base components of our algorithm are described

elsewhere (see [5]), but suffice it to say that it uses multi-swath

projections to identify activity peaks, dynamic programming to

carve seams between those activity peaks, and overlap of connected

components to detect falsely merged lines. These processes were

then extended using statistical analyses to find and remove the over-

generation of detected peaks and to trim out falsely carved seams.

The resultant algorithm seems to have quite high on a huge

collections of generic printed documents and has accuracy (perhaps

about 85%-90%) on a collection of tens of thousands of handwritten

document spanning four centuries. We expect that the results of the

PreDNN system rival those of state-of-the-art and we have observed

that they are quite usable. That said, leaving out up to 15% of a

document’s content is undesirable.

2.1. Line Count Cells
Deep neural networks provide a potential means to overcome some

of these gaps. We reasoned that if we could build a neural network

which, given a snippet of an image, could predict if the snippet

contains no text lines, fractions of a line, multiple lines, or exactly

one line, then such a network could be used to either completely

perform line segmentation or to improve upon an existing line

segmentation algorithm.

To test this hypothesis, we assembled a mixed corpus

consisting of printed Latin-script texts, Chinese print, and Latin-

script handwritten documents. From these, we automatically

generated a huge collection of image snippets of variable sizes

whose edges were not necessarily straight. These snippets were then

condensed down into small cells of size 30 pixels by 30 pixels. We

tagged each of these 30x30 cells with one of seven different tags

based on the number of lines observed in each cell. As shown in

Figures 1a-g, these snippets fall into categories of:

 Fig1.a Fig1.b Fig1.c Fig1.d Fig1.e Fig1.f Fig1.g

(a) no-text-lines, (b) single-text-line, (c) vertical-bar-only, (d) less-

than-one-text-line, (e) two fragment lines, (f) more-than-one-but-

fewer-than-two, and (g) two-plus-lines. The colors that are selected

here are deliberate in that they will be used throughout this paper in

colorized images representing the various classifications.

Our collection of tagged cells currently consists of 70.5K

different images of which 65,259 are used for training and 5,277 are

used for testing. No specific effort was made to have a comparable

number of each of the seven classes of cells, so the final distribution

is reflective of what is observed in practice. Table 1 shows the

actual distribution by category in both the training and testing sets:

Table 1: Distribution of Counts of Tagged Cells

CATEGORY # in TRAIN # in TEST

no-text-lines 7330 625

single-text-line 12651 848

vertical-bar-only 703 89

less-than-one-text-line 16813 1098

two fragment lines 5027 407

more-than-1/fewer-than-2 8573 801

two-plus-lines 14162 1409

 An interesting thing about tagging cells in the way specified is

that the tags remain the same even if the cells are flipped with

respect to the y-axis, or if they are rotated 180 degrees. That means

that if we consider these four permutations, we can likewise

multiply the size of our collection by four resulting in a training set

with 280K elements and a test set with 21K.

2.2. Training a DNN for Line Counts
With training cells available, we can now train a deep neural

network (DNN) to try to predict the line count of future image cells.

To train our DNN, we make use of Google’s open source

Tensorflow [6] engine. Additionally, the Tensorflow developers

created a “recipe” using convolutional neural networks (CNN) as

applicable to the MNIST digit-recognition task which we have

modified for our task. We use the same number of layers in our

network as they have, but we use a kernel size of 3, and our first

through third hidden layers have, respectively, 16, 32, and 216

nodes. Each of our layers are smaller than those of the recipe, but

this is beneficial for recognition speed (which seems essential for

our task).

Our particular DNN topology yields an average tagging

accuracy of 91%. We can get up to 2% better prediction accuracy

by doing one of the following: (a) on a per cell basis, apply the DNN

predictor to each of the four legal permutations of that cell and vote,

or (b) create cells from overlapping rectangular regions and keep the

result if the prediction for both regions agree or otherwise use the

prediction of the overlap region as a tie breaker. Since

computational cost is a factor, method (a) is somewhat less desirable

because one must perform four times more computation for a 2%

gain. On the other hand, method (b) can be performed for only about

10% more cost than just doing cell-by-cell evaluation because the

rectangles take the place of the cells and the tie breakers only need

to be applied when there is disagreement. For this reason, we use

method (b) throughout our computations unless stated.

3. Take 1: Line Counters As Line Segmenters
Once we have a DNN-based line count predictor, the next question

is: how does one best apply these to the task of line segmentation?

One option is to let the DNNs do the entire process. The thought

here is that if the predictions are high quality, then one should be

able to split up an image into a bunch of non-overlapping regions.

Then, for a given region, if the DNN predicts that there is more than

one line, it should be feasible to do a kind of binary search of splits

through that cell until the system predicts that one of the splits has

exactly one row. Then one can recurse over the remaining portion

of that region until all the individual lines are detected. On the flip

side, if the system predicts that there is less than one line, one should

be able to merge with residuals from above or below the region in

order to form a single cell.

 We took a snippet of a newspaper image, split it into 9x22 non-

overlapping regions, converted each region to a 30x30 cell, and

made a DNN prediction on each cell to yield the image in Figure 2.

The colors shown in the image are those indicated above in the

descriptions of Figures 1a-g.

Figure 2: Image tagged completely with neural decisions

 We next applied the recursive splitting method as described on

any regions which were tagged as having more than one line. The

result is shown in Figure 3. Encouragingly, we see that this process

is able to segment out some textual lines (i.e., lines that are

consistently green and pink). On the other hand, we also notice that

many of the splits result in disconnected lines and we see that some

of the narrow residual regions are tagged incorrectly. Moreover, if

this image had drifting text lines as opposed to the nice horizontal

ones we observe, it is unclear that splitting each cell using horizontal

cuts would even be able to properly segment the image. To top it

off, this process is computational expensive because every cell

needs to be split repeatedly and both the top and bottom splits needs

to be evaluated after each split.

Figure 3: Post-splitting image

 This technique may have some merit, but for the moment, it

seems that its challenges outweigh those merits. We need to ensure

that we have a process that is fast enough to use, but a process which

is also less sensitive to errors in cell-level predictions or to non-

horizontal text. So we try another approach.

4. Take 2: Line Counters As Supplementer
Suppose, then, that rather than trying to use the neural cells to

segment the whole image that we use them to try to identify and fix

problem areas as a follow-on from a normal line segmentation

process. This has a number of benefits. For one, the basic

algorithms tend to be fast, so this should reduce the time

requirements. Moreover, they are not as affected by the “horizontal-

ness” of the text. Likewise, if the system says the original lines are

appropriate, no subsequent work is required but we have much more

confidence in the original decision.

4.1. Neural Cells for Error Detection / Greenness
With this in mind, we run PreDNN on raw images to detect potential

lines. Although PreDNN does a good job with line segmentation,

we show in Figure 4 an image with bad PreDNN segmentation so

that we can later see the effects of the neural processing. This

handwritten document does have drift on some lines and some

ascender-descender regions which make the PreDNN system

believe it should generate more lines than should exist. But

whatever the reason, there are line segmentation errors which would

affect recognition and we would like to remove those.

Figure 4: Example of bad line segmentation from PreDNN

 To take advantage of the neural predictions, we treat each

region delineated by a line as a swath which we slice into

overlapping cells whose tops and bottoms follow the contours of the

line segments and the right and left edges are parallel and vertical.

These odd-shaped regions are repackaged to become 30x30 cells

and the neural net (with overlapping and voting) is used to predict

the content of each cell. The outcome of this is shown in Figure 5.

Figure 5: PreDNN followed by Neural Coloring

As can be observed, the neural network is able to identify, with

reasonable accuracy, background regions (pink), single lines of text

(green), and, in this case, lines that appear to be split (blue). If we

consider weighting the cells with pink or purple as 0.1 and

everything else as 1.0, then green+pink+purple here represents

69.9% of the cells. We will call this metric the “greenness.” We

would like the greenness to be much closer to 100%, so even before

making any corrections, we still know that the initial line

segmentation yielded a fairly poor result. (It should also be

mentioned that the dark shading within a cell near the line

boundaries is an effect which we automatically add based on a

computation of the cell’s pixel darkness and its proximity to the line

boundary.)

4.2. Neural Cells for Error Correction
Although error detection is potentially useful, especially if humans

can be used for fixing bad line segmentations, it would be beneficial,

where possible, for the system to fix itself. Part of the challenge

with this is in the recognition that we do not have perfect cell

prediction, which means that many of the so-called errors are not

line segmentation errors at all, but rather, are cell prediction errors.

So until the cell prediction accuracies increase, we need to limit

automatic correction to those areas which appear consistently to be

bad. This means we will predominantly only be able to fix full or

partial lines that appear to be broken.

We saw in Figure 5 that there were a number of rows where

there are quite a few blue cells in the row. This is likely indicative

of over-segmentation. If there is over-segmentation, we would

expect that two juxtaposed rows would have a high frequency of

blue cells (or even pink ones in regions of the image where we might

hope to see green). If there were under-segmentation, we would

expect a single row to have more reds, oranges, or yellows.

Using these observation, we created two sets of formulas – one

for potential fusion and one for potential splitting – where we count

and weight the frequency of certain types of cell juxtapositions and

decide whether we should do subsequent analysis. For example, if

a cell is blue as is its vertical neighbor, these facts will contribute to

a potential need for fusion. If the cell is blue and its vertical

neighbor is pink, this also contributes, though less strongly, to the

potential need for fusion. On the other hand, if the cell is green as

is its vertical neighbor, this suggest that fusion is potentially

undesirable. If the vertical neighbor is green but this cell is red, then

perhaps line splitting is in order.

 After each formula is applied to each row pair, the scores from

those formulas are sorted and the highest-scoring outcomes are

processed first. If the formula indicates that merging should

potentially happen, the two rows are merged offline; or if splitting

should happen, PreDNN is applied to that row offline. (By “offline”

we mean that these images are handled separately from the original

image.) These offline swaths are re-cellularized, and the cells are

colorized. If the offline colored swaths are “greener” than the

original swaths had been, the offline swaths are introduced into the

main image and the original line segmentations are discarded.

This process provides images which almost consistently have

equal or better line segmentation than original. Figure 6 shows the

outcome of this process as applied to the data in Figure 5. These

updates, which we will call PostDNN, are now used as the improved

line segmentation. Note that greenness is now 100% giving high

confidence that the image is properly segmented – or, at least, that

it has improved. We have seen that the greenness measure actually

provides a very reasonable estimate of how well the line

segmentation has worked; and the updated line segmentation

improves recognition capability.

Figure 6: PostDNN outcomes

4.3. Still on the To-do List?
This ability to repair fully-merged and fully-fractured lines is a great

benefit because these situations are the ones that likely represent the

largest losses in overall recognition accuracy. When a line is split

in two, the best case scenario for recognition is that no words will

be recognized, and the worst is that a bunch of spurious words will

be produced. When two lines are merged, a recognition system will

obviously fail to recognize the words from either line, and has a

pretty reasonable chance of reporting spurious elements. Thus, we

would expect that the error fixes we have described in the PostDNN

system should result in reasonable improvements in recognition

capability.

That said, there are a number of situations where major or

frequent errors are detected but for which we still do not quite know

how to improve the lines. The fact that we are only getting 91-93%

accuracy in cell tagging precludes us from fixing all of the potential

issues since many of those issues are not line segmentation errors at

all, but are just faulty cell-tagging. Yet there are still situations

where there are numerous cells which are neither green nor pink,

and yet it is still unclear how to move forward. We identify them

here for completeness but place them in the arena of “still-to-do”:

[a] Line Bumping: Perhaps the most common phenomenon in terms

of errors is the occurrence of lines which are mostly correct but

which, at some point, cut through some words. We have introduced

functionality into the algorithm which allows the system to “bump”

a line above or below its current location with the intent of avoiding

character splitting. However, at this point, we have not found this

approach particularly helpful because the neural prediction accuracy

is not close enough to 100% -- meaning that many times the so-

called corrections end up breaking something that was accurate but

mislabeled. Figure 7, for example, shows an image where the lines

have sliced through some of the words (the “L” in Letters and the

“T” is Testamentary). The blue cells identify the presence of

potential issues, and the dark shading, which was mentioned earlier,

suggests that the blue areas probably belong to the rows below them.

However, in this case, the green cells adjoining the blue cells are

properly tagged since the strokes in those cells are fully bounded

above and below by the corresponding line segments. This makes

it difficult to know how to perturb the line correctly.

Figure 7: Neurally-Colored Image When Line Bisects Words

[b] Line straightening: A more concerning problem is when the

image has warping in some way such that the text lines have large

curvature. In such cases, line segmentation algorithms can fail. The

neural prediction is an excellent “error detector” in that it can

identify clearly that something is amiss in the line segmentation. In

Figure 8, for example, we can see that the left side of the image has

almost no green cells, whereas the right side of the image has a

number of columns where most of the cells within the column are

green or pink. Despite this beneficial error detection, we have yet

to identify a clear mechanism which would allow us to convert an

initial segmentation as in Figure 8 into a well-segmented image.

Figure 8: Neurally-Colored Image with Curved Lines

[c] Image “Unwarping”: The last major issue which still needs

to be resolved is that of images that are wrinkled like a flag blowing

in the wind. An example of this is seen in Figure 9. As can be seen

here, the left and right sides of the image have areas with mostly

green cells, but in the center, there appears to be a disruptive region

where the cells are almost all non-green. As with curved lines, the

neural components are able to detect the presence of errors, but we

have yet to decide on a process for fixing such situations.

Figure 9: Neurally-Colored Image when Image is Warped

5. Evaluating Segmentation Improvements
There are three ways in which we can evaluate any improvements

in line segmentation between the PreDNN and the PostDNN. We

could tag a truth set of lines and determine how much better

PostDNN is as compared to those, but this is an expensive endeavor.

Another mechanisms is to compare the amount of “greenness”

between the two data sets. A third option is to run recognition with

PreDNN and PostDNN and see what happens to recognition. The

second option is convenient and easy, so we will do that here. On

the other hand, since it is not a direct measure and since the system

we are creating here tries to directly improve greenness, it is

somewhat “cheating” to only evaluate greenness. So we will also

use the third mechanism and see if the PostDNN has any added

benefit on what we really care about: recognition performance.

5.1. Evaluation by Comparing Greenness
To compare greenness, we selected 219 images of documents that

were either English newprint or English handwriting. Since

handwriting has more issues for line segmentation than print, there

is a predominance of handwriting in our set. Other than that bias,

the images were drawn mostly randomly. Table 2 shows various

elements regarding “greenness” in both the PreDNN and in the

PostDNN system. The first five columns show the number of

documents that have certain levels of greenness and the last row

shows the average percentage of greenness. Note that the average

greenness increased by 4.6% absolute. This is substantially better!

Table 2: “Greenness” Comparisons: Before and After

 PreDNN PostDNN

of 95%+ green 69 92

of 90-94% green 47 58

of 80-89% green 52 46

of 70-79% green 31 14

Below 70% green 20 9

Average Greenness 86.88% 91.30%

That said, there is still clearly room for further improvement.

Though 100% may not be attainable, it is likely that one could

continue to move the amount of greenness by at least 5% absolute if

the neural decisions were more correct and if one had proper

mechanisms for handling the various phenomena that might arise.

By the same token, it is not clear how much that additional greenness

– or the amount we have recovered up to this point -- relates to better

accuracy. So we consider that next.

5.2 Evaluation by Comparing Recognition
The ultimate proof of the effectiveness of this approach is to see how

it actual plays out in terms of actual recognition rates. Doing this

also allows one to get some sense of how greenness increases relate

to increases in accuracy – if at all.

 To evaluate this, we created a test collection of 565 US legal,

fully-prose documents which are drawn from hundreds of US

counties across a four-hundred-year time span. This set contains

137K words and is very representative of the kinds of documents

that might be found in a genealogical collection. We also trained a

handwriting recognition system using a separate, but similar, set of

documents. We applied our recognition system to the test

documents using line segmentation that comes both from the

PreDNN and the PostDNN line segmenters. The results are shown

in Table 3.

Table 3: Handwriting Recognition: Before and After

 PreDNN PostDNN

Word Accuracy 83.9% 85.1%

 As is clear from Table 3, the PostDNN system is better

accuracy-wise than the PreDNN system. In order to attain this

accuracy gain, we needed to expend an additional 19% more time in

the line segmentation phase. Yet there end up being fewer false

lines, which saves 11% in recognition time. Consequently, for a

comparable computation costs, we get a nice 1.2% absolute (7.5%

relative) reduction in recognition errors using this process.

6. A Word on Other Neural Techniques
Before concluding, it should be mentioned that this paper does not

represent the first paper where neural processes have been used to

try to perform line segmentation. Interestingly, though, despite the

overwhelming success of deep neural networks, there are

surprisingly few in the line segmentation arena. Yet one such paper

is worth noting by Bluche, et al [7]. In it, the authors actually

attempts to do handwriting recognition without the benefits of any

line segmentation and instead uses a multi-directional LSTM for

recognition instead of bi-directional LSTM. This work is

noteworthy in that the author is able to get the system to perform

recognition, but they appear to suffer a 60% relative drop in

accuracy – which is certainly something that one could not afford in

practice. Consequently, we did not use those techniques for our

work, but which are definitely interested in any follow-on work.

7. Conclusions
In this paper, we have demonstrated that neural cells can be used to

not only detect errors in high-quality line segmentation algorithms,

but they can also be used for correcting such errors. We were able

to show an approximate 5% improvement in line segmentation

which yielded 1.2% accuracy gain in handwriting recognition. We

think these approaches could also be applied to others’ line

segmentation approaches.

8. Acknowledgements
The author expresses appreciation to FamilySearch’s partner

companies for any images which have been used in this paper for

which they were the originators. He also wishes to thank Ian James

for Ian’s early internal work with image zoning which bears

resemblance to some of the work in this paper.

References
[1] L. Likforman-Sulem, A. Zahour, B. Taconet “Text Line Segment-

ation of Historical Documents: a Survey,” ICDAR, 2006

[2] R. Garg, N Garg, “Problems and Review of Line Segmentation of

Handwritten Text Documents,” Int’l Journal of Advanced Research

in Computer Science and Software Engineering, Vol 4: 4, Apr 2014

[3] D.J. Kennard, W. A. Barrett, “Separating Lines of Text in Free-Form

Hand-written Historical Documents,” DIAL 26, Lyon, France 2006.

[4] N. Arvanitopoulos, S. Süsstrunk. “Seam Carving for Text Line Extra-

ction on Color and Grayscale Historical Manuscripts,” ICFHR, 2014.

[5] P. Schone, A. Cannaday, S. Stewart, R. Day, J. Schone. “Automatic

Transcription of Historical Newsprint by Leveraging the Kaldi

Speech Recognition Toolkit,” DRR, San Francisco, 2016.

[6] M. Abadi, et al. “TensorFlow: Large-scale machine learning on

heterogeneous systems,” 2015. Software available from

tensorflow.org.

[7] T. Bluche, J. Louradour, R. Messina. Scan, Attend, and Read: End-

to-End Handwritten Paragraph Recognition with MDLSTM

Attention. https://arxiv.org/pdf/1604.03286.pdf, 2016.

https://arxiv.org/pdf/1604.03286.pdf

