
Standards Technical Conference

Using Neural Cells to

Improve Image Textual Line

Segmentation

Patrick Schone
(patrickjohn.schone@ldschurch.org)

7 February 2017

mailto:patrickjohn.schone@ldschurch.org

Overview

• Motivation

• Neural Cells for Line Counting

• Hybrid Segmentation

• Evaluation Methods

2

Motivation

3

• To do OCR/HWR, usually need to break up into lines.

• Most use common image processing &/or statistics.

• Techniques work fine on small / homogeneous sets.

• Huge heterogeneous DBs are a challenge.

• Activity or Connectivity vs intentionality.

• Deep Neural Nets can be taught some about human-

ness. Can they be useful for line segmentation?

Base System: “PreDNN”

We start off with a system we call “PreDNN” with the

following properties:

• Multi-swath projection

• Bi-directional Dynamic programming with two-pass seam carving

(first detects peaks, the troughs)

• Grayscale-based

• Use of connected components to help detect false lines or falsely

merged lines.

• Statistical analyses to discard overgenerated peaks or troughs

We believe that this PreDNN rivals the state of the art.

4

DNNs to Count Lines

5

A B C D E F G

Category

A No-text Line

B Single Text Line

C Vertical Bar Only

D Less Than One Text Line

E Two Fragment Lines

F More than one but less than two lines

G Two-plus Line

Want to create a neural network that can determine if we find well-segmented lines.

Tagged Cells: Counts

6

in TRAIN # in TEST

No-text Line 7330 625

Single Text Line 12651 848

Vertical Bar Only 703 89

Less Than One Text

Line

16813 1098

Two Fragments 5027 407

More than one less

than two

8573 801

Two-plus Line 14162 1409

Totals 70.5K 5.3K

Tagged Cells: Counts II

7

Note that the “lined-ness” of a cell is still the same even if the

image has been rotated 180 degrees of flipped with respect to

y-axis. We will refer to these as the “legal permutations.”

Using the legal permutations, we have 4 times more train/test:

280K training 21K testing.

The DNN

8

We train a Convolutional Neural Network for line count prediction.

We use Google’s TensorFlow.

And use a variant of their MNIST-Digit-Recognition recipe.

Except, for speed, we reduce the parameters:

Kernel Size = 3

Layer #1 = 16

Layer #2 = 32

Layer #3 = 216

This yields a network with 91.0% accuracy.

HOWEVER, we can get about 2% improvement by either considering the

four permutations or by overlapping decision regions and voting.

Line Counter= Line Fixer

9

Potential Usage:
How about if we just

apply the system to

PreDNN’s outputs

and then try to

correct?

Example to the right

is one where line

segmenter does

poorly. Can we fix it?

Line Counter = Line Fixer

10

Start off by colorizing

the image.

For each swath, cut

into overlapping

regions.

Predict color of each

region.

Use voting to predict

most likely color of

each intersected

area.

Line Counter = Line Fixer

11

Compute “Greenness”:

GREEN Cells + 0.1* (#PINK + #PURPLE) Cells

--

GREEN + 0.1* (#PINK + #PURPLE) + #{BLUE, RED, YELLOW, ORANGE}

Greenness =

69.9%

Line Counter = Line Fixer

12

We created formulas that comparing each

row to the one above/below:

Symptoms of Potential False Split:

Blue/Blue: Likely split

Blue/Pink: Possible split

Green/Pink: Slight chance of split

Green/Green: Probably OK

Etc.

Symptoms of Potential False Merge:

Red/Green: Likely Merge

Red/Red: Almost definite merge

Red/Orange: Probable merge

Line Counter = Line Fixer

13

We handle potential false splits first, then false merges.

We sort from the most likely to the least, and throw out candidates with

low scores.

For potential false splits (and fusions would be similar):

<= Start with row pair.

Offline, merge cells and evaluate.

<= If the results are better, replace the

original with the new. 

<= If results are worse, though, skip

that potential pairing. 

Line Counter = Line Fixer

14

Using this process, we are able to completely fix what

was broken. The resultant image’s line segmentation

has 100% greenness!

Evaluation Methods

16

Option 1: Score against human-vetted lines.

Do-able, but costly to evaluate.

Option 2: Evaluate by Greenness

Very inexpensive, but “cheating” a bit

Option 3: Evaluate by Recognition

Ultimately, our end goal, so this is good eval.

Evaluation

17

Option 2: Evaluate by Greenness

PreDNN PostDNN

of 95+% green 69 92

of 90-94% green 47 58

of 80-89% green 52 46

of 70-79% green 31 14

Below 70% green 20 9

Average Greenness 86.88% 91.30%

Evaluation

18

Option 3: Evaluate by Recognition:

We built a test collection of 565 handwritten, prose-style US legal

documents with 137K test words.

Also trained a handwriting recognition system using comparable but

different training documents.

Then ran recognition using both PreDNN and PostDNN systems:

PreDNN PostDNN

HWR Word

Accuracy
83.9% 85.1%

Line Segmentation cost 19% more, but recognition costs 11% less

because there are fewer lines.

So for fairly comparable costs, we get 1.2% absolute gain.

19

• Can detect line count at the cellular level.

• Greenness: allows one to detect areas of potential problems.

• Neural improves segmentation of an already-good system.

• We expect it to be applicable w/ other systems.

• Final segmentation actually results in HWR improvements.



ANY QUESTIONS?

Synopsis

