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Overview

• Motivation

• Neural Cells for Line Counting

• Hybrid Segmentation

• Evaluation Methods
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Motivation
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• To do OCR/HWR, usually need to break up into lines.

• Most use common image processing &/or statistics.

• Techniques work fine on small / homogeneous sets.

• Huge heterogeneous DBs are a challenge.

• Activity or Connectivity    vs       intentionality.  

• Deep Neural Nets can be taught some about human-

ness.  Can they be useful for line segmentation?



Base System: “PreDNN”

We start off with a system we call “PreDNN” with the 

following properties:

• Multi-swath projection

• Bi-directional Dynamic programming with two-pass seam carving 

(first detects peaks, the troughs)

• Grayscale-based

• Use of connected components to help detect false lines or falsely 

merged lines.

• Statistical analyses to discard overgenerated peaks or troughs

We believe that this PreDNN rivals the state of the art.
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DNNs to Count Lines

5

A                   B                   C               D                  E                  F                G

Category

A No-text Line

B Single Text Line

C Vertical Bar Only

D Less Than One Text Line

E Two Fragment Lines

F More than one but less than two lines

G Two-plus Line

Want to create a neural network that can determine if we find well-segmented lines.



Tagged Cells: Counts
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# in TRAIN # in TEST

No-text Line 7330 625

Single Text Line 12651 848

Vertical Bar Only 703 89

Less Than One Text 

Line

16813 1098

Two Fragments 5027 407

More than one less 

than two 

8573 801

Two-plus Line 14162 1409

Totals                         70.5K                 5.3K



Tagged Cells: Counts II
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Note that the “lined-ness” of a cell is still the same even if the 

image has been rotated 180 degrees of flipped with respect to 

y-axis.  We will refer to these as the “legal permutations.”

Using the legal permutations, we have 4 times more train/test:

280K training 21K testing.



The DNN
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We train a Convolutional Neural Network for line count prediction.

We use Google’s TensorFlow.  

And use a variant of their MNIST-Digit-Recognition recipe.

Except, for speed, we reduce the parameters:

Kernel Size = 3

Layer #1      = 16

Layer #2      = 32

Layer #3      = 216

This yields a network with 91.0% accuracy.

HOWEVER, we can get about 2% improvement by either considering the 

four permutations or by overlapping decision regions and voting.



Line Counter= Line Fixer
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Potential Usage:
How about if we just 

apply the system to 

PreDNN’s outputs 

and then try to 

correct?

Example to the right 

is one where line 

segmenter does 

poorly.  Can we fix it?



Line Counter = Line Fixer
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Start off by colorizing 

the image.

For each swath, cut 

into overlapping 

regions.

Predict color of each 

region.

Use voting to predict 

most likely color of 

each intersected 

area.



Line Counter = Line Fixer
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Compute “Greenness”:

# GREEN Cells   + 0.1* (#PINK + #PURPLE) Cells

----------------------------------------------------------------------

# GREEN + 0.1* (#PINK + #PURPLE) + #{BLUE, RED, YELLOW, ORANGE}

Greenness = 

69.9%  



Line Counter = Line Fixer
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We created formulas that comparing each 

row to the one above/below:

Symptoms of Potential False Split:

Blue/Blue: Likely split

Blue/Pink: Possible split

Green/Pink: Slight chance of split

Green/Green: Probably OK

Etc.

Symptoms of Potential False Merge:

Red/Green: Likely Merge 

Red/Red:    Almost definite merge

Red/Orange: Probable merge



Line Counter = Line Fixer
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We handle potential false splits first, then false merges.

We sort from the most likely to the least, and throw out candidates with 

low scores.

For potential false splits (and fusions would be similar):

<= Start with row pair.   

Offline, merge cells and evaluate.

<= If the results are better, replace the 

original with the new.     

<= If results are worse, though, skip 

that potential pairing.     



Line Counter = Line Fixer
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Using this process, we are able to completely fix what 

was broken.  The resultant image’s line segmentation 

has 100% greenness! 



Evaluation Methods
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Option 1: Score against human-vetted lines. 

Do-able, but costly to evaluate.

Option 2: Evaluate by Greenness

Very inexpensive, but “cheating” a bit

Option 3: Evaluate by Recognition 

Ultimately, our end goal, so this is good eval.



Evaluation
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Option 2: Evaluate by Greenness

PreDNN PostDNN

# of 95+% green 69 92

# of 90-94% green 47 58

# of 80-89% green 52 46

# of 70-79% green 31 14

# Below 70% green 20 9

Average Greenness 86.88% 91.30%



Evaluation
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Option 3: Evaluate by Recognition:

We built a test collection of 565 handwritten, prose-style US legal 

documents with 137K test words.  

Also trained a handwriting recognition system using comparable but 

different training documents.  

Then ran recognition using both PreDNN and PostDNN systems:

PreDNN PostDNN

HWR Word 

Accuracy
83.9% 85.1%

Line Segmentation cost 19% more, but recognition costs 11% less 

because there are fewer lines.  

So for fairly comparable costs, we get 1.2% absolute gain.
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• Can detect line count at the cellular level.

• Greenness: allows one to detect areas of potential problems.

• Neural improves segmentation of an already-good system.

• We expect it to be applicable w/ other systems.

• Final segmentation actually results in HWR improvements.



ANY QUESTIONS?

Synopsis


