Inferring the genomes of mothers and fathers using genotype data from a set of siblings

Amy L. Williams Cornell University

February 7, 2017 Family History Technology Workshop

Cornell University

Children inherit two chromosome copies: Mosaic of parents' chromosomes

Squares and circles: males and females, respectively Parents have line joining them and connected to children

Can infer parents' chromosomes from siblings ... with a catch

- Color coding shown is not built into data
- Can get "color" by comparing siblings' genomes: identical regions from same chromosome → same "color"

Can infer parents' chromosomes from siblings ... with a catch

- Color coding shown is not built into data
- Can get "color" by comparing siblings' genomes: identical regions from same chromosome → same "color"
- Example: can find dark / light green chromosomes and dark / light grey chromosomes
 - Works by stitching together identical regions

The catch: unclear which chromosome belongs dad / mom

- Can infer a pair of chromosomes that belongs to one parent
- But nothing indicates which chromosome is from dad / mom

The catch: unclear which chromosome belongs dad / mom

- Can infer a pair of chromosomes that belongs to one parent
- But nothing indicates which chromosome is from dad / mom

- In fact, each chromosome is independent
 - Not just 2 possibilities: $2^{22} > 4$ million possibilities
 - Only true for autosomes: X and Y chromosomes easier

Key insight: men / women produce different mosaic patterns

Y-axis unit is cM: centiMorgan

1 Morgan: interval with average of 1 crossover per generation 1 M = 100 cMCampbell *et al.* (2015)

Step 1: locate crossovers using only siblings

- Using hidden Markov model (HMM), can identify "colors" using only sibling data
 - Structured problem:
 - Four possible chromosomes
 - Two per parent
 - Each child inherits one from each parent at each position

- Get location of crossovers as small window in genome
 - Example: between
 A and B variants

Step 2: define model of data

- Two features in data:
 - Number of transmitted crossovers per child
 - Windows in which crossovers occurred

Step 2: define model of data

- Two features in data:
 - Number of transmitted crossovers per child
 - Windows in which crossovers occurred
- Model for crossover number: $N \sim \text{Pois}(T)$,

T = chromosome length in Morgans male / female

Step 2: define model of data

- Two features in data:
 - Number of transmitted crossovers per child
 - Windows in which crossovers occurred
- Model for crossover number: $N \sim \text{Pois}(T)$,

T = chromosome length in Morgans male / female

• Probability of crossover in window length l Morgans: $L \sim Exp(1)$ $P(L \leq l) = 1 - exp(-l)$

 \succ In general, *l* differs between males / females

Step 3: infer male / female origin can treat each child independently

• Data are sets of crossovers inherited by *n* children:

$$\begin{aligned} X_1 &= (X_{11}, X_{12}, \dots, X_{1n}) \\ X_2 &= (X_{21}, X_{22}, \dots, X_{2n}) \\ X_{pc} &= \{w_{pc1}, w_{pc2}, \dots\}, p \in \{1, 2\}, c \text{ child number} \\ w_{pcj} \text{ indicate window in which crossover } j \text{ occurred} \end{aligned}$$

• Want to compute the following (and the opposite) $P(X_1, X_2 | S_1 = F, S_2 = M)$

Step 3: infer male / female origin can treat each child independently

• Data are sets of crossovers inherited by *n* children:

$$\begin{aligned} X_1 &= (X_{11}, X_{12}, \dots X_{1n}) \\ X_2 &= (X_{21}, X_{22}, \dots, X_{2n}) \\ X_{pc} &= \{w_{pc1}, w_{pc2}, \dots\}, p \in \{1, 2\}, c \text{ child number} \\ w_{pcj} \text{ indicate window in which crossover } j \text{ occurred} \end{aligned}$$

• Want to compute the following (and the opposite) $P(X_1, X_2 | S_1 = F, S_2 = M) = P(X_1 | S_1 = F)P(X_2 | S_2 = M)$

Step 3: infer male / female origin can treat each child independently

• Data are sets of crossovers inherited by *n* children:

$$X_{1} = (X_{11}, X_{12}, \dots, X_{1n})$$

$$X_{2} = (X_{21}, X_{22}, \dots, X_{2n})$$

$$X_{pc} = \{w_{pc1}, w_{pc2}, \dots\}, p \in \{1, 2\}, c \text{ child number}$$

$$w_{pcj} \text{ indicate window in which crossover } j \text{ occurred}$$

- Want to compute the following (and the opposite) $P(X_1, X_2 | S_1 = F, S_2 = M) = P(X_1 | S_1 = F)P(X_2 | S_2 = M)$
- Can break into terms for each child:

$$P(X_1|S_1 = M) = \prod_{c=1}^{n} P(X_{1c}|S_1 = M)$$

Step 3: probabilities for each child use number, locations of crossovers

 Can now apply model and get different probabilities of male / female origin for each crossover

$$P(X_{1c}|S_1 = M) = P(N_{S_1} = |X_{1c}|) \times \prod_{w_{1cj} \in X_{1c}} P(L \le Rec(w_{1cj}, S_1))$$

Rec(*w*, *S*): probability of crossover in window *w* in *S* \in {*M*, *F*}

Results

San Antonio

- Data: San Antonio Family Studies
 - Total: 2,490 genotyped samples, 80 pedigrees
 - Analyzed 69 families, 3 to 12 children
 - Include data for both parents to check accuracy
 - Genotypes from 888,748 SNPs (variants)
- In 1,518 chromosomes, posterior probabilities of correct configuration:

	Full model	Poisson	Crossover windows
> 0.5	1,515	1,099	1,513
> 0.9	1,513	372	1,511

One issue... currently finding crossovers with parent data

- These results based on finding crossovers with parent data
 - Is cheating, but will fix soon
- For > 8 children should generally do this well
 - Basically perfect results

One issue... currently finding crossovers with parent data

- These results based on finding crossovers with parent data
 - Is cheating, but will fix soon
- For > 8 children should generally do this well
 > Basically perfect results

- Fewer siblings: some portions of genome will be ambiguous
 - But substantial parts will not be
- > Will have accuracy results for only siblings in coming weeks

Applications: large datasets

 Used new method Attila to identify pedigrees in large cohorts

Applications: large datasets

 Used new method Attila to identify pedigrees in large cohorts

- Why not get DNA from everyone in the world?
 - 1. Find siblings
 - 2. Infer parents' genomes
 - 3. Repeat 1 & 2 for many generations

Acknowledgements

Sayantani Basu-Roy

Ryan O'Hern

Cornell University

Alfred P. Sloan FOUNDATION

Cornell seed grant Meinig Family Investigator Award

Postdoc and graduate student openings