Inferring the genomes of mothers and fathers using genotype data from a set of siblings

Amy L. Williams
Cornell University

February 7, 2017
Family History Technology Workshop

Children inherit two chromosome copies: Mosaic of parents' chromosomes

Squares and circles: males and females, respectively Parents have line joining them and connected to children

Can infer parents' chromosomes from siblings ... with a catch

- Color coding shown is not built into data
- Can get "color" by comparing siblings' genomes: identical regions from same chromosome \rightarrow same "color"

Can infer parents' chromosomes from siblings ... with a catch

- Color coding shown is not built into data
- Can get "color" by comparing siblings' genomes: identical regions from same chromosome \rightarrow same "color"
- Example: can find dark / light green chromosomes and dark / light grey chromosomes
- Works by stitching together identical regions

The catch: unclear which chromosome belongs dad / mom

- Can infer a pair of chromosomes that belongs to one parent
- But nothing indicates which chromosome is from dad / mom

The catch: unclear which chromosome belongs dad / mom

- Can infer a pair of chromosomes that belongs to one parent
- But nothing indicates which chromosome is from dad / mom

- In fact, each chromosome is independent
- Not just 2 possibilities: $2^{22}>4$ million possibilities
- Only true for autosomes: X and Y chromosomes easier

Key insight: men / women produce different mosaic patterns

Y -axis unit is cM : centiMorgan
1 Morgan: interval with average of 1 crossover per generation $1 \mathrm{M}=100 \mathrm{cM}$

Step 1: locate crossovers using only siblings

- Using hidden Markov model (HMM), can identify "colors" using only sibling data
- Structured problem:
- Four possible chromosomes
- Two per parent
- Each child inherits one from each parent at each position
- Get location of crossovers as small window in genome
- Example: between
A and B variants

Step 2: define model of data

- Two features in data:
- Number of transmitted crossovers per child
- Windows in which crossovers occurred

Step 2: define model of data

- Two features in data:
- Number of transmitted crossovers per child
- Windows in which crossovers occurred
- Model for crossover number:

$$
N \sim \operatorname{Pois}(T)
$$

$T=$ chromosome length in Morgans male / female

Step 2: define model of data

- Two features in data:
- Number of transmitted crossovers per child
- Windows in which crossovers occurred
- Model for crossover number:

$$
N \sim \operatorname{Pois}(T),
$$

T = chromosome length in Morgans male / female

- Probability of crossover in window length l Morgans:

$$
\begin{aligned}
& L \sim \operatorname{Exp}(1) \\
& P(L \leq l)=1-\exp (-l)
\end{aligned}
$$

$>$ In general, l differs between males / females

Step 3: infer male / female origin can treat each child independently

- Data are sets of crossovers inherited by n children:
$X_{1}=\left(X_{11}, X_{12}, \ldots X_{1 n}\right)$
$X_{2}=\left(X_{21}, X_{22}, \ldots, X_{2 n}\right)$
$X_{p c}=\left\{w_{p c 1}, w_{p c 2}, \ldots\right\}, p \in\{1,2\}, c$ child number
$w_{p c j}$ indicate window in which crossover j occurred
- Want to compute the following (and the opposite)

$$
P\left(X_{1}, X_{2} \mid S_{1}=F, S_{2}=M\right)
$$

Step 3: infer male / female origin can treat each child independently

- Data are sets of crossovers inherited by n children:

```
\(X_{1}=\left(X_{11}, X_{12}, \ldots X_{1 n}\right)\)
\(X_{2}=\left(X_{21}, X_{22}, \ldots, X_{2 n}\right)\)
\(X_{p c}=\left\{w_{p c 1}, w_{p c 2}, \ldots\right\}, p \in\{1,2\}, c\) child number
```

$w_{p c j}$ indicate window in which crossover j occurred

- Want to compute the following (and the opposite)

$$
P\left(X_{1}, X_{2} \mid S_{1}=F, S_{2}=M\right)=P\left(X_{1} \mid S_{1}=F\right) P\left(X_{2} \mid S_{2}=M\right)
$$

Step 3: infer male / female origin can treat each child independently

- Data are sets of crossovers inherited by n children:

$$
\begin{aligned}
& X_{1}=\left(X_{11}, X_{12}, \ldots X_{1 n}\right) \\
& X_{2}=\left(X_{21}, X_{22}, \ldots, X_{2 n}\right) \\
& X_{p c}=\left\{w_{p c 1}, w_{p c 2}, \ldots\right\}, p \in\{1,2\}, c \text { child number }
\end{aligned}
$$

$w_{p c j}$ indicate window in which crossover j occurred

- Want to compute the following (and the opposite)

$$
P\left(X_{1}, X_{2} \mid S_{1}=F, S_{2}=M\right)=P\left(X_{1} \mid S_{1}=F\right) P\left(X_{2} \mid S_{2}=M\right)
$$

- Can break into terms for each child:

$$
P\left(X_{1} \mid S_{1}=M\right)=\prod_{c=1}^{n} P\left(X_{1 c} \mid S_{1}=M\right)
$$

Step 3: probabilities for each child use number, locations of crossovers

- Can now apply model and get different probabilities of male / female origin for each crossover $P\left(X_{1 c} \mid S_{1}=M\right)=P\left(N_{S_{1}}=\left|X_{1 c}\right|\right) \times \prod_{w_{1 c j} \in X_{1 c}} P\left(L \leq \operatorname{Rec}\left(w_{1 c j}, S_{1}\right)\right)$
$\operatorname{Rec}(w, S):$ probability of crossover in window w in $S \in\{M, F\}$

Results

- Data: San Antonio Family Studies
- Total: 2,490 genotyped samples, 80 pedigrees
- Analyzed 69 families, 3 to 12 children
- Include data for both parents to check accuracy - Genotypes from 888,748 SNPs (variants)
- In 1,518 chromosomes, posterior probabilities of correct configuration:

	Full model	Poisson	Crossover windows
>0.5	1,515	1,099	1,513
>0.9	1,513	372	1,511

One issue... currently finding crossovers with parent data

- These results based on finding crossovers with parent data
- Is cheating, but will fix soon
- For > 8 children should generally do this well
> Basically perfect results

One issue... currently finding crossovers with parent data

- These results based on finding crossovers with parent data
- Is cheating, but will fix soon
- For > 8 children should generally do this well > Basically perfect results

- Fewer siblings: some portions of genome will be ambiguous - But substantial parts will not be
> Will have accuracy results for only siblings in coming weeks

Applications: large datasets

- Used new method Attila to identify pedigrees in large cohorts

> biobank 152,095 samples

Applications: large datasets

- Used new method Attila to identify pedigrees in large cohorts

$$
\begin{aligned}
& \text { Didbank } \\
& \square \square \times 36
\end{aligned}
$$

- Why not get DNA from everyone in the world?

1. Find siblings
2. Infer parents' genomes
3. Repeat $1 \& 2$ for many generations

Acknowledgements

Sayantani Basu-Roy

Ryan O'Hern

Funding:
Cornell University

Cornell seed grant Meinig Family Investigator Award

Postdoc and graduate student openings

