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What is a Name Network?
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Uses of name networks

- ldentify common misspellings made by census
takers and indexers

- Vectorize a name

e.g. Smith =>[0.75, 1.23, 5.1, 3]



Results

- Name Vectorization improved recall by 3%

- ldentified 500,000 names as “Correctly Spelled”
(out of 10M unique surnames).

- Linked 1.2 Million misspellings to a correctly
spelled name.
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Motivation

- Immediate goal: identify the same
Individual across censuses

- Applications: family tree, historical research

- Problem: How do we know whether a
similar person is actually the same person?



Example

1910 1920
Name: Marie H Smyth Mary H Smith
Event Place: Minneapolis St. Paul
Birth Year: 1860 1861
Birth Place: Wisconsin Wisconsin
Mother's BP: Prussia Germany
Father's BP: Rhode Island Connecticut
Marital Status: Married Married
Race: White White
Sex: Female Female




L
Household Matching

Pros:

Mimics human linking °

Allows us to identify probable
deaths

Narrows down the set of
match candidates

Uses more information

Cons:

May miss subtle relationships
in the data that machine
learning (ML) picks up on

Usually requires some hard
boundary; less subtlety than
ML

Key assumption fails for
institutional “households” —
combinatorial explosion



L
Household Matching: Method 1

Start from a set of “anchor matches” and examine
other pairwise combinations of household members for

matches.

Pros: Cons:

* Allows lower match * Misses all households without
thresholds — good for data someone already matched
with errors * Not requiring last name to

* Correctly matches married match results in more false
women with at least one positives

family member in common
between censuses



Household Matching: Method 2

For each census, create a dataset containing all pairs of
family members. Merge pairs to pairs on some loose
criteria (Soundex, approximate birth year).

Pros:

_ Cons:
* Does not depend on “anchor pairs”

* Not able to match married women
* Redundancy



Machine Learning

* Creates a model that takes a set :
of match “features” and returnsa = iunae

* We use the XGBoost algorithm B K

- Patterns
- Dependencies
- Hidden structures
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Relationships

Algorithms + Techniques

* Requires a set of known
true and known false
matches

* Good training data will
include “good false” and
“less-good true” matches



raining Data

* Data cleaning ey | s ey |
* Important derived variables: Cormates | ceed . By
NARA Soundex code — group ey ] ey R
together similar-sounding names e ey
Cohort (approximate birth year) —round =7 =2 . P
to nearest multiple of 4 and nearest e . o 3100
multiple of 4 + 2 and use both — T . ey B

Jaro-Winkler — generally the best string
similarity measure, but only good for
post-blocking applications
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Machine Learning — Blocking Problem

* How to decide which individuals to compare with each other?

* Simple Cartesian Product not an option:
80,000,000 x 80,000,000 = 6,400,000,000,000,000

* Perfect matches account for just a fraction of individuals
* Solution: merge the censuses on a variety of variable lists

* Challenge: keep size down while including as many of the correct
matches as possible



Machine Learning

Pros: Cons:

* Complexity: able to pick up on ¢ Overfitting always a concern
subtleties that rule-based or * Does not make full use of
even human linking methods household members
would fa_|l to pick up on | * Creating good training and

* Generality: run any candidate prediction datasets can be
pair through the model and get  challenging: data size vs.

a reasonable prediction; works recall

for one-person households
and fuzzy matches



Final Note

* There is a trade-off with any linking method.

* Fortunately, we can combine our methods to improve
performance.

* In the Record Linking Lab, we aim to find the ideal combination
of hand-linking, rule-based, and machine learning approaches.
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Anti-German Discrimination During World War |
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Anti-German Discrimination During WWI

- Use soldier’s census
hometown to create e
treatment and control ST s S B

roups Rebecca  Golscein Germany  Germany
g p ] Arthur R Veit Pennsy* Germany
- Census birthplace

information allows us to e TP Peererrrry peemserers Eprver e peveverrr pre——
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- We can use
geocoordinates to link
census towns from 1910
to 1920 census



Anti-German Discrimination During World War |

- We find the number

Table 1. Effect of WWI death on percent change of ethnic Germans from 1910 to 1920 Of i n d iVi d u a I S
VARIABLES e 0 e O reporting birthplace
Had Soldier Death  -0.168*** _0.071%** _0.062%** _0.053%** [-0.056%** as German Yy

(0.014)  (0.013) (0.013) (0.013) | (0.013)

decreases from 2.5

Population Controls No Yes Yes = Yes Yes ) I I ) . 1 9 1 O 1 7
Race Controls No No Yes Yes Yes
Gender Controls No No No Yes Yes m I I O n I n to :
Marital Status Controls No No No No Yes m i I I io N i N 1 920
Observations 30,028 30,028 30,028 30,028 30,028 .
R-squared 0.005 0261 0266 0270 0272 - We find a 5.6%
Notes: Population controls include population for 1910 and 1920, as wells as the square of the

population for 1910 and 1920. Race controls include Percent White and Percent Black for 1910 I

and 1920. Gender controls includes Percent Female, and marital status controls includes Percent d e C re a S e I n G e rm a n

Married. Cities in the sample were restricted to have a 1910 population of 35,000 or less. i n d ivi d u a I S I ivi n g i n a

census town in 1920
which had a soldier
die in World War |



Determinants of City Size

+ 62 of the 500 largest cities in
the 1900 census decreased
In size in the 1940 census

+ We want to examine the
demographic factors that are
related to cities decreasing in
size

* We can exploit census place
data from the census tree to
link cities across censuses

* Census tree allows
individual’s location to be
tracked across censuses




City Linking Process

citylSlo countylSlo statelS1l0 citylS2o countylS2o statelS20 pop
Winston Forsyth North Carolina Winston-Salem Forsyth North Carolina 55495
Goldmine Franklin North Carolina Gold Mine Franklin North Carolina 422
Bennetts Bayou Fulton Arkansas Bennett Bayou Fulton Arkansas 1€s
Fort Atkinson Jefferson Wisconsin Koshkonong Jefferson Wisconsin 1157
Tripoli Bremer Iowa Frederika Bremer Iowa 144
Plattsburg Clinton Missouri Concord Clinton Missouri 450

- We find individuals linked in consecutive
censuses (i.e. 1910 and 1920)

« For each location in the first census, we find
the most frequent location in the second
census

* We link the most frequent location in the
second census to the first census



L
City Linking Process

- Advantages
- Can match cities that would not be matched with a
string-matching algorithm
Ex: Winston, NC in 1910 becomes Winston-Salem in 1920
- Matches cities with minor misspelling between
censuses

- Matches difficult to match census places
Ex: Township 1 in 1910 matches to Montecito in 1920

citylSlo countylSlo0 statelSl0 citylS2o countylS20 statelS20 Pop

Township 1 Santa Barbara California Montecito Santa Barbara California 154
Township 3 Santa Barbara California Goleta Santa Barbara California 128
Township 4 Santa Barbara California Santa Ynez Santa Barbara California Se
Township 5 Santa Barbara California Lompoc Santa Barbara California 3c4

Township € Santa Barbara California Los Alamos Santa Barbara California 52



Final Note

+ The Census Tree has unique features that can be
exploited in research
« Census records contain additional information that can
be used in research
» Education, income, employment, occupation

- The Census Tree can be used to link families through
time in intergenerational research



