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Start-Follow-Read

e End-to-End Full-Page Handwriting Recognizer[3]
o Start of Line
o Line Follower
o Recognition

e Won 2017 ICDAR Competition on Handwritten Text Recognition
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Start-Follow-Read - Does it Generalize?

1: Thursday, May 9, 1889 6: Georgie Webber, Mose Thatcher and girl  1: TUPSAAY,
2: Went to Salt Lake to attend a 7: Walt. Jennings, mr Teasdale. and others
3: party given a Eldridge’s. There was 8: It fell to my lot to take the

4: present kate a Celia Sharp Katie ~ 9: Webber’s home.

5: B Young Mel Sharp, Lottie and 10: Stayed at Eldriges that eve.

6: Beorgie Welhr, Mon Thatcher md giel
2: Went to salt lake to attend a 7: Walt, Zinmngs, Mr. Seardeli and others
3: parlyy gione a Adridgio. There was 8: lo fell to my lot to tatre the

4: purent Nate Celia Pharf lalie 9: Weblrrs home.

5: B. Youngmel Charf, Loe 10: Stayed as Elaridges that en.




Start-Follow-Read - Does it Generalize?
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ARU-Net

e State-of-the-Art Baseline Detection [4]

o  Deep U-Net (with residual units)
o  Spatial Attention Mechanism

e Winner of the 2019 ICDAR Competition on Baseline Detection
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ARU-Net - Does it Generalize?
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ARU-Net - Does it Generalize?
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The Point

Incredible performance with enough labeled data

Performance decreases as target domain differs from source domain
Labeling data is costly

Where do we go from here?



Transfer Learning

e The process of utilizing knowledge gained from one task and applying it to
another related problem.

. L .
Traditional ML vs  Transfer Learning
e |solated, single task learning: M e Learning of a new tasks relies on
o Knowledge is not retained or the previous learned tasks:
accumulated. Learning is performed o Learning process can be faster, more

w.0. considering past learned accurate and/or need less training data
knowledge in other tasks

Leaming
Dataset 1 == System
Task 1

[12]




Types of Transfer Learning

Pl

> Self-taught

Casel [ Learning

No labeled data in a source domain

Inductive Transfer

/ Learning

Labeled data are available in a source domain

Labeled data are available :
in a target domain \ Source limd Multi-task
Case 2 i targettasksare i> .
/ learnt Learning
simultaneously
Transfer —— i Labeled dataare Assumption:
Learning a":(ﬂ;?: d%%ilz *i |  Transductive different >  Domain
Transfer Learning «— domainsbut i Adaptation
single task
No labeled data in

both source and
target domain

Assumption: single
domain and single task

\ Unsupervised
Transfer Learning

Sample Selection Bias

/Covariance Shift [7]




Inductive Transfer Learning

e Labeled data in source and
target domains.

e Fine-tune on pretrained
model

e Potential Benefits
o  Better Accuracy
o Faster Training
o Fewer Labeled Data in Target
Domain

pa

Self-taught
/' -2 Learning

| No labeled data in a source domain :

Inductive Transfer
Learning

Labeled data are available
in a target domain

Labeled data are available in a source domain |

Trans.fer S
Learning

Source l::nd 4 Multi-task
target tasks are ;
Y Cased [ e mm > caming

No labeled data in
both source and

target domain

simultaneously
Labeled data are Assumption:
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Unsupervised
Transfer Learning

Sample Selection Bias
/Covariance Shift

[7]



Transductive Transfer Learning

e |abeled data in source,
Unlabeled data in target

e Access to unlabeled target
data during training

e Potential Benefits
o Better accuracy
o Less/No labeled data needed in
target domain
o Align the feature representations
in the source and target domains

| No labeled data in a source domain :

Inductive Transfer

/ Learning

Labeled data are avail

in a target domain

lable

Self-taught
Learning

Labeled data are available in a source domain !

Trans'fer S
Learning

Labeled data are
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learnt
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Feature Representation Transfer

|dentify good feature points that apply to both the source and target domain
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Feature Representation Transfer
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Domain Adversarial Training
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Domain Adversarial Training

Reverse Gradient

Domain Loss CTC Loss
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CycleGAN




CycleGAN

L2 Loss

Real Image in domain A

real or fake ?

i

Discriminator for domain B

ol

LN

Fake Image in domain B \ Reconstructed Image

Gga generates a reconstructed image of domain A.

This makes the shape to be maintained

when Gae generates a horse image from the zebra.

Real Image in domain B

[13]




CycleGAN

L2 Loss
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CycleGAN - Chinese Characters

SIMHEIM

Generated Characters

A Bl B B B
H| B A B B B
k| & | % »*| | B
W[ b W oA |k
R| R A | R R| | —
' 7 & % B | B
) I T = T L R I -

AW | i

T e ]
2% o0 § i+ s aupe

&\ JU /A mD v

[2]




Other Transductive Transfer Learning Ideas

e Self-Supervised Learning [6]

o Fine-Tune model on images from the target set that classified with high confidence

e Style-Transfer [11]

o Apply handwriting style from target set to source set as pre-processing step



Looking Forward

e Expand on transductive transfer learning for handwriting recognition

e Apply these techniques using a source domain other than a system font

o Tibetan Characters [1]
o  Chinese Characters [2]

e The Goal: Produce a system that utilizes the power of transfer learning to
achieve good performance on unlabeled datasets
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