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Overview



Datasets
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Domains
� Train and Test in same domain
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Domain Shift
� Source and Target domain are different
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Why We Care?
� Historical documents usually come from different 

domains:
� Documents are different time, authors, etc

� Documents in Different Languages could cause also 
a domain shift



DA for Character Recog.
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Domain Adversarial Training 
(DANN) - Classifier

Ganin, Yaroslav, et al. "Domain-adversarial training of neural networks." The 
Journal of Machine Learning Research 17.1 (2016)



Domain Adversarial Training 
(DANN) - Discriminator

Ganin, Yaroslav, et al. "Domain-adversarial training of neural networks." The 
Journal of Machine Learning Research 17.1 (2016)



Domain Adversarial Training 
(DANN) – Reversal Layer

Ganin, Yaroslav, et al. "Domain-adversarial training of neural networks." The 
Journal of Machine Learning Research 17.1 (2016)



VADA
� Virtual Adversarial Domain Adaptation (Shu 2018)

� Unsupervised Domain Adaptation

� Conditional Entropy Minimization

� https://github.com/ozanciga/dirt-t



Results

Source
Target

MNIST
SVHN

Source Only 40.9

VADA 74.0



Results

Source Classification Loss



Results

Discriminator Loss



Results

Target Classification Accuracy



Conclusion and Future Work
� DA techniques can alleviate domain shift problem

� DA significantly improve over simple transfer leaning

� DA can be applied to other datasets relevant to text 
and handwriting recognition
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