Using DNA from many samples to distinguish pedigree relationships of close relatives

Amy L. Williams

February 24, 2020 Family History Technology Workshop

Massive datasets: Many close relatives / small pedigrees

In dataset with n individuals, have $\binom{n}{2} = \frac{n(n-1)}{2} = \mathcal{O}(n^2)$ pairs

Goal: detect and reconstruct pedigrees using only DNA

Signal: Identical by descent (IBD) sharing

- Close (and some distant) relatives share large regions <u>identical by descent (IBD)</u>
 - Represented here as same color
- Each generation, parents transmit random ½ of their genome to children
 - Relatives separated by M generations share average of $\frac{1}{2^M}$ of genome
- Average IBD sharing fractions:
 - Full siblings: 50%, Aunt-nephew: 25%, First cousins: 12.5%

Second degree relatives: All share ~25% of genome IBD

Difficult to distinguish using only data from the pairs

IBD sharing rates for these relationships heavily overlap

Idea: analyze IBD sharing of pair to other relatives

CREST: Classification of Relationship Types

Jens Sannerud

Approach: ratios of IBD sharing in three samples versus two

For GP, expect $R_1 = 1/4, R_2 = 1$

Ying Qiao

Approach: ratios of IBD sharing in three samples versus two

Ying Qiao

Approach: ratios of IBD sharing in three samples versus two

$$R_{1} = \frac{Length(IBD_{x_{1},y} \cap IBD_{x_{2},y})}{Length(IBD_{x_{1},y})}$$

$$R_{2} = \frac{Length(IBD_{x_{1},y} \cap IBD_{x_{2},y})}{Length(IBD_{x_{2},y})}$$

For GP, expect $R_1 = 1/4, R_2 = 1$

For AV, expect $R_1 = 1/4$, $R_2 = 1/2$

For HS, expect $R_1 = 1/2$, $R_2 = 1/2$

Ying Qiao

CREST uses kernel density estimators to infer relationships

Trained kernel density estimators (KDEs) using simulated data Features: R_1, R_2

Can combine multiple relatives by taking union of IBD sharing

$$R_{i} = \frac{Length\left(\left(\bigcup_{j}IBD_{x_{1},y_{j}}\right)\cap\left(\bigcup_{j}IBD_{x_{2},y_{j}}\right)\cap IBD_{x_{1},x_{2}}\right)}{Length\left(\bigcup_{j}IBD_{x_{i},y_{j}}\right)}$$

CREST highly sensitive, highly specific

Ran PADRE, CREST on 200 replicates of various pedigree structures

Qiao, Sannerud et al. (in revision, 2019)

CREST infers relative types in Generation Scotland data

Generation Scotland data: 205 GP, 1,949 AV, and 121 HS pairs with at least one mutual relative

Given data equivalent to one first cousin (10% of genome covered by IBD regions), CREST's sensitivity is 0.99 in GP, 0.86 in AV, and 0.95 in HS pairs

Qiao, Sannerud et al. (in revision, 2019)

Secondary aim: infer whether relatives are paternal or maternal

MaternalHalf-siblings

Key insight: males / females have different crossover locations

Data from human chromosome 10

Average number of crossovers:

• Females: 2.04

Males: 1.27

Genetic map from Bhérer et al. (2017)

CREST infers maternal / paternal type in Generation Scotland

Analyzed all 848 GP and 381 HS pairs in Generation Scotland

Using LOD = 0 as boundary:

- 99.7% of HS
- 93.5% of GP
 Inferred correctly

Qiao, Sannerud et al. (in revision, 2019)

Conclusions

- CREST classifies second degree relationship types
 - Enabled by multi-way IBD sharing
- Male / female crossovers reveal the paternal / maternal type of half-siblings and grandparent-grandchild pairs
- Can apply to pedigree reconstruction: other methods subject to ambiguities for second degree pairs
- Preliminary results indicate CREST also applies to third degree pairs

Acknowledgements

Ying Qiao

Jens Sannerud

Generation Scotland
Caroline Hayward
Archie Campbell

Nancy E. and Peter C. Meinig

Cornell University

Approach: IBD segment ends approximate crossover locations

Model IBD segments as regions flanked by two crossovers
 No-crossover interval: interior of IBD segment

Locations of crossovers: window surrounding IBD segment ends

• For each IBD segment i, likelihood of parent being $S \in \{F, M\}$ is

$$P(i|S) = P(w_0|S) \cdot P(i_{\text{int}}|S) \cdot P(w_1|S)$$

Taking all IBD segments to be independent, we compute

$$LOD = \log_{10} \frac{\prod_{i} P(i|F)}{\prod_{i} P(i|M)}$$

Jens Sannerud