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ABSTRACT 

 

We have created a neural network-based relation extraction 

system which is able to work simultaneously in many 

languages without the need for multiple models.  This 

capability extends recent advances in neural network 

transformers and the actual methodology does not appear to 

be in the literature.  This neural relation tagger has greatly 

advanced FamilySearch’s ability to mine unstructured 

multilingual content and extract genealogical value that can 

be presented to patrons.   We describe the architecture of this 

system and then illustrate its performance in the lab.  Then, 

and more importantly, we show how replacing our existing 

relation-finding component with this transformer-based one 

yields a substantial 54% relative performance gain. 

 

1. BACKGROUND 

For decades, volunteers and contractors have been engaged 

in the practice of identifying facts and associations from 

genealogical documents so as to make historical records 

findable by individuals seeking their relatives.  This 

distillation process is typically referred to as “indexing.”  

Over the past decade, indexing has moved from a shallow 

and exclusively human-labeling effort to one which is 

increasingly done to a faster and richer extent by machines. 

One process for automatically mining content from 

historical data is through entity and relation extraction [1].  

Entity extraction identifies key elements of interest such as 

persons, places, dates, occupations, etc.  Relation extraction 

seeks to discover any connections that should be drawn 

between pairs of entities. For example, in relation 

extraction, one could have an event and a date and declare 

that the particular date is when the event started; or there 

may be two persons and the system could report that the 

second person is a father to the first person. 

FamilySearch first started doing automatic indexing in 

2015 as it applied entity and relation extraction to born-

digital obituaries [2].  Since then, FamilySearch has 

branched into auto-indexing collections that first require 

automatic transcription.  That is, it has published automatic 

indexes distilled from hundreds of millions of printed and 

handwritten documents up to six centuries old in many 

languages including English, Spanish, and Portuguese [3].   

Even so, the publication of these huge volumes of 

documents has come with significant struggle do in one 

part from trying to use older, maximum entropy-based [4] 

(MaxEnt) relation extraction technology which we had 

designed originally for use with the modern English 

obituaries that have no recognition errors nor parsing 

issues.  In the presence of errorful transcription in a variety 

of genres and an ever-increasing number of languages, the 

need for a more comprehensive and reliable relation tagger 

was clear. Additionally, with the advent of transformers 

[5], it seemed there should be a way to build a relation 

tagger that could handle all languages simultaneously and 

with higher overall accuracy.   

We have been able to build an initial version of such a 

system, and this paper describes its creation and its 

application.  We will also show how the system performs in 

laboratory environments using concrete examples.  Lastly, 

and with greater importance, we show its impact on one of 

our major operational tasks – auto-indexing of Portuguese 

civil birth records – and how it in isolation yields a 54% 

relative performance gain over using our previously-used 

(MaxEnt) relation-finding component. 
 

2. ARCHITECTURE  

2.1 Data Preparation 

Our neural relation system accepts as input five types of 

information: the tokens themselves, the characters in those 

tokens, any entity tags for those tokens, each entity’s zero-

up count in the given line of input (#0, #1, etc.) and, for 

people, we also include name parsing information.  We 

sub-tokenize the input tokens using a process similar to the 

Bert Tokenizer [6], and we align the other four types of 

tags with their respective sub-tokens.  Embeddings are then 

created for each of these five sources of input and 

concatenated into one master feature vector per sub-token. 

The target output for each line of input is a sequence of 

indexes and relation tags that would be desired from the 

input text.  For example, suppose the input text were  

#0 Bob Jones was #1 born to #2 John Jones and to #3 his 

#4 second wife , #5 Mary in #6 Provo , #7 Utah on #8 27 

Feb 2023. 

where colors indicate different entity classes, underline 

indicates SURNAME, italics indicates a GIVEN_NAME, 

and #n indicates the start of the nth entity in the input 

sequence.  In this situation, we want eleven relations to 

emerge – that Bob Jones (#0) is the principal individual in 

the article, that Bob has the birth_event of ‘born’ (#1), has 

a father ‘John’ (#2) and has a mother ‘Mary’ (#5); that the 

‘born’ event happened in ‘Provo’ (#6) on the ’27 Feb 2023’ 

(#8); that John (#2) is the referent of ‘his’ (#3) and that 

John (#2) and Mary (#5) are spouses; that ‘his’ (#3) has a 

familymember association with ‘second wife’ (#4); that 

Mary (#5) is a member of the class of “second wife” (#4), 

and that ‘Provo’ (#6) is a subplace of ‘Utah’ (#7).   



We represent each of these relations in one single string by 

providing the relative offset for the starting entity (#0, for 

example), the ending one (eg., #1), and the relation 

between them (eg., ‘has event’).  This string of relations is 

sorted by starting offsets followed by ending offsets and we 

require that starting offsets are always less than or equal to 

the ending offsets.  For any relations where the end offset 

should actually be before the start we replace such with a 

reverse-form of that relationship (such as RevIsMember) so 

that we can ensure that ends never precede starts.  Also, for 

equality-type relations, we augment the relations with the 

entity tag types that start and end the relation (meaning 

something like IsSamePerCor). 

With these requirements, we can say that the desired 

relationship output sequence for the previously-given text 

should be: 

#0 #0 IsPrincipal #0 #1 HasEvent #0 #2 HasFather  

 #0 #5 HasMother #1 #6 StartPlace #1 #7 StartDate 

#2 #3 IsSamePerCor #2 #5 HasSpouse #3 #4 HasFamMbr 

#4 #5 RevIsMember #6 #7 IsSubplace. 

The input and output sequences are also wrapped with a 

[START] at the beginning and [END] at the end of the 

particular sequence.  “<empty>” is used as the target when 

there are no desired relations. 

Most transformers decode outputs one token at a time. If 

successful, a transformer applied to the above text sequence 

would be given an initial output sequence with only a 

“[START]” tag and would autoregressively predict that #0 

should follow it, followed next by another #0, and then by 

IsPrincipal, and so forth until it reaches the “[END]” token. 

When the system trains, we do not want it to get high 

‘credit’ for only predicting a bunch of #n’s, so we alter the 

loss and accuracy functions to account for entire triples 

(two indexes plus corresponding relation) before counting 

anything as correct. 

2.2 System Design 

We leverage elements of a three-layer neural transformer 

(seen in Figure 1) to learn to predict relations given the 

inputs. For our data, fewer or more than three transformer 

layers yielded lower accuracies. We also say “leverage” 

here because although we do exploit these encoders and 

decoders as shown in the figure, we have a number of 

differences that are worth commenting on. 

2.2.1. Modified embeddings. The typical embedding layer 

of a transformer, as shown in tan color in Figure 1, will 

convert just tokens into a high-dimensional space.  We 

have elements, though, that go beyond tokens alone.  We 

have tokens, character streams, entity classes, name 

chunks, and the #n relative entity offsets.  We could treat 

each of these as separate kinds of units and just do general 

embeddings, but instead we create composite embeddings 

that allow specific access to each of these five elements.  

For example, as one possible instantiation, we may have a 

total embedding size of 132 where 72 dimensions are token 

embeddings, 24 dimensions are derived from LSTMs of 

character embeddings, 16 dimensions are entity 

embeddings, 4 are name chunk embeddings, and 16 are 

entity offset embeddings.  The size of ‘132’ is fairly small, 

but this number actually works fairly well for our dataset. 

Yet this in only one possible setup and other sizes may 

work as well or better with different quantities of data.  It is 

also feasible to just use same-sized embeddings for each of 

the features and add them together, but that is future study. 
 

 

Figure 1: Key Elements of a 3-Layer General Transformer 
 

2.2.2. Single encoder with multiple decoders. We found 

that if we have a single transformer try to predict all the 

relations, especially in a fairly data-starved environment, 

many desired relations will be lost.  Therefore, one 

mechanism we used to combat this problem is to have a 

single encoder but multiple decoders for all non-equality 

relations.  Particularly, we use three decoders.  The first of 

these focuses attention on personal and familial relations 

such as the IsPrincipal, HasFather, HasMother, 

HasFamMbr, and other similar relations.  The second 

focuses on relations that have to with events, such as 

HasEvent, StartPlace, StartDate.  The last of the three is 

kind of a ‘catch-all drawer’ for the relationships that do 

not fit into the other two categories – such as IsSubplace.  

This triple decoder makes fewer errors than a single 

decoder, and it is also slightly faster since each decoder’s 

output sequence is shorter.  On the other hand, this 

methodology means that the family-member relation 

decoder is not aware of what the event relation decoder is 

doing, which may impact some results. 

2.2.3. Skip sequences for equalities. Transformers work 

with contiguous sequences of text under normal 

circumstances.  Such was the case with the elements 

described in Section 2.2.2.  However, if one separately 

accounts for coreference/equality relations in a text (like 



“his” = “Bob Jones”), then the vast majority of non-

equality relations can be  discovered in relatively small text 

sequences.  On the other hand, it can be the case that 

coreferential words can be separated by even thousands of 

words.  However, if, say “Bob Jones” at word 20000 is the 

same as “Robert Jones” at word 1000, we probably do not 

need a lot of the intervening information to make that 

assessment.  Instead, we just need to make sure that these 

two words are in some sort of text sequence together.  We 

enable this capability by using “<SKIPx>” tokens in the 

text where “SKIP” indicates to the transformer that it does 

not get to see the intervening text and x is a integer-based 

logarithmic distance to show how many tokens would have 

been in that intervening sequence.   

Therefore, for equality-style relations, we use yet another 

three-level transformer – with a separate encoder and single 

decoder – where the input sequences will include skips.  

We usually include several words on either side of the skip 

for this process.  So the input to the system may be:  

“Robert Jones, aged 37, <SKIP4> Bob’s wife of 10 years, 

Harriet Jones …”  

and the transformer will be asked if there are any equality-

style relations in the sequence.  We do not allow SKIPs to 

go across documents, so in this case, SKIP4 would suggest 

that “Bob” and Robert are fairly close-by strings within the 

same document.  Our hope, in this case, is that it will 

determine that Robert and Bob are likely the same.  At 

longer distances, this equality may not be as evident – but it 

may also not be as relevant, either, for extracting the kinds 

of genealogical content we are interested in. 

2.3 Training Issues and Novelty 

We train our relation tagger using 3.7M hand-labeled 

relations in about 40 languages (though about 15 of these 

languages dominate the collection).  The system setups 

vary but typically can be fully trained in 12-48 hours on a 

GPU.  The system learns its own weights currently though 

we are exploring mechanisms for getting embeddings from 

a much broader collection of texts and languages or from 

large language models available on the web.  “Embedding” 

in this case does not mean “encoding” –it means the initial 

input vectors to the system. 

Before leaving the subject of architecture, it is worth 

commenting on the novelty of this system.  There have 

been other transformer-based relation taggers (ex [7]). 

Typically, these systems have the transformer predict what 

relation or relations might exist between a given pair of 

entities.  However, we know of no relation-tagging system 

that will simultaneously identify all the relations for a given 

sequence as does ours (though [8] does simultaneous slot-

filling with transformers and some of our processes are 

derived from that work).  One-pass processing of relations 

as described in our paper is highly desirable both for 

accuracy and for speed, especially with a system like ours 

which has roughly 90 entity types and 25 major relation 

types where doing all pairs of entities would be unwieldy 

and even identifying one relation at a time would still be 

expensive.   

3. PERFORMANCE: IN THE LAB  
 

 

Figure 2. Entity tagged Spanish christening record 
 

Transformers of this kind are trained by giving them the 

input sequence and the full output sequence up to the point 

of prediction.  During actual inference, though, all outputs 

must be predicted one at a time as was mentioned 

previously.  Thus, when we train, we achieve next-token 

prediction triple accuracies above 93%.  Yet when the full 

sequence must be predicted, the average triple accuracies 

decrease into the 70s.  This may seem low, but many 

relations are redundant and the primary need is to at least 

find one instance of the relation correctly.  Moreover, many 

of the falsely-predicted relations are not “legal” in that the 

entities that are paired should not produce the proposed 

relations, so such relations can be filtered out.  (This 

filtering will be addressed later in this paper.) Additionally, 

we tag using overlapped texts in most cases, so the 

overlapped regions can help to identify relations that may 

have gotten missed in one region but not in the other. 

To illustrate performance, we use the entity-tagged text of a 

Spanish christening record as seen in Figure 2 and apply 

the neural relation tagger (NRT) to that text.  The predicted 

relations are shown below in Table 1.  Relations that are 

tagged in green are correct.  Those in blue are redundant 

and could be omitted.  Purple indicates relations that were 

missed. 

As can be seen from Table 1, the results looks very 

promising in this case – where almost all of the relations 

are properly produced.  In fact, we see that there are no 

false alarms in this case, but there are the three missed 

relations.  There are also five relations which are redundant 

which do not hurt performance but also do not add benefit.  

These redundancies came because the system has the 

separate modules for equality and non-equality, so it cannot 

guarantee that these relationships are already there – and 

thus it reports them twice. 

From Table 1, we also see that the offsets are absolute 

numbers here rather than zero-up relative offsets we have 

been using up to this point.  When we produce our input 

strings to the transformer, we provide it with the relative 

offsets and we store separately the relative-to-absolute 

offsets.  So after the transformer predicts something like #1 

and #2, we can convert these to their true offsets such as 56 

and 75. 

 



Relation StartWord Offset End Word Offset 

HAS FACT  yo 56 Cura Párroco 75 

RESIDENCE 

PLACE 
yo 56 

San Rafael de 

Bejuma 
91 

HAS FACT  yo 56 Pbro. 471 

HAS TITLE yo 56 Pbro. 471 

STARTDATE bauticé 113 
diesinueve de 

marzo … 

veinticuatro 
3 

STARTPLACE bauticé 113 
San Rafael de 

Bejuma 
91 

HAS FACT  bauticé 113 18 495 

STARTDATE nació 178 diesiseis de enero 187 

SUBDATE OF 
diesiseis de 

enero 
187 co-\nrriente año 210 

HAS EVENT quien 229 bauticé 113 

MEMBER OF quien 229 párvula 166 

HAS EVENT quien 229 nació 178 

SAME AS 
Hercilia,\n 

Gertrudis 
251 quien 229 

PRINCIPAL 

PERSON 

Hercilia,\n 

Gertrudis 
251 

Hercilia, 

Gertrudis 
251 

MEMBER OF 
Hercilia,\n 

Gertrudis 
251 hija 272 

HAS FATHER 
Hercilia,\n 

Gertrudis 
251 José A. Barreto 289 

HAS 

MOTHER 

Hercilia,\n 

Gertrudis 
251 

María\nVictoria 

de Barreto 
307 

HAS FACT hija 272 legítima 277 

HAS_FAMLY 
José A. 

Barreto 
289 párvula 166 

HAS_FAMLY 
José A. 

Barreto 
289 hija 272 

SPOUSE 
José A. 

Barreto 
289 

María\nVictoria 

de Barreto 
307 

SAME AS sus 341 quien 229 

HAS_FAMLY sus 341 padrinos 345 

MEMBEROF 
Ramon\nMa 

Hidalgo 
354 padrinos 345 

MEMBEROF 
Rosalia de 

Hidalgo 
373 padrinos 345 

MEMBEROF 
Ramon\nMa 

Hidalgo 
354 quienes 394 

MEMBEROF 
Rosalia de 

Hidalgo 
373 quienes 394 

SAME_AS 
F.Monroy 

Jiménez 
477 yo 56 

5xREDUND’T sus/Hercilia’s father, mother; yo/F.Monroy’s elemts  

3xMISSING Familymbr(Rosalia,párvula/hija), Fact(Hercilia,18) 

Table 1. Neural relation predictions on text from Figure 2 

4. PERFORMANCE: THE REAL TASK  

Although the lab results look beneficial, the true test is how 

well the system performs on a real problem.  Specifically, 

how good do the predicted relations look when generated 

for actual genealogical records?  Do these models give us 

significant gains over MaxEnt on a large-scale dataset of 

fully structured records?  
 

4.1. First Contact 

It is said that no system survives first contact with real data, 

so we expect an iterative process will be required to 

optimize the use of these neural relations.  Even so, Table 2 

shows this ‘first contact’ performance of our system (NRT) 

compared to the previous Maximum Entropy (MaxEnt) 

baseline that we had formerly.  In this situation, we run 

both systems against a test set of 943 Portuguese-language 

civil birth records that have been fully structured and 

annotated for all names, dates, relationships, and places.  

Performance is measured using a weighted F-score. Each 

expected record element (e.g., name, date, place, event, 

relationship type, relationship member, occupation, etc.) is 

assigned a weight based on its estimated genealogical 

relevance. Information on the main subject of the record is 

weighted higher, and information about unrelated people is 

weighted lower. Information about close family 

relationships (parent-child, spouse, grandparent) and vital 

events (birth, marriage, death) is valued more highly than 

other types of relationship or event information. 

These models are being tested in isolation, without any 

fixes or post-processing applied to their outputs. When 

using our older, original MaxEnt models, we obtained a 

great deal of our quality by leveraging rules and other post-

processing steps. Yet the large improvements we show here 

in weighted F-score (Table 2) indicate that our neural 

relation tagger (NRT) models greatly improve relation 

quality which decreases the need for post-processing to 

make generated relations usable by downstream processes. 
 

Model F-score Delta 

Baseline (MaxEnt) 48.09 N/A 

NRT (Ours) 69.17 +21.08 

Table 2. First-Contact Replacement Attempt 
 

As shown, there is a sizeable gain in performance using the 

new models over the MaxEnt models.  There is an absolute 

gain of 21.08%, and this equates to a 41.45% increase in 

relative accuracy.  Moreover, the MaxEnt system that was 

applied was trained exclusively on Spanish and Portuguese 

records. Attempts to widen its training set to other 

languages yielded poorer performance and more corrupt 

relations. Our NRT model, on the other hand, includes high 

volumes of relation-tagging data in English, Chinese, 

Scandinavian languages, Russian, and other languages. Not 

only does our model generate significantly higher quality 

relations, but given these additional languages of training, it 



is likely to be substantially more robust and capable of 

operating well in these other languages without the need for 

additional models. 

4.2. Refinement #1: Probability Thresholding 

Although the initial models perform much better than 

MaxEnt, they are not without their problems. The most 

prominent problem is a tendency to hallucinate additional 

relations. These incorrect relations are often extra 

occupations or residence-place facts, or erroneous parent-

child relationships that falsely connect different people in a 

record.  These incorrect relations often come associated 

with lower probability scores from the transformer. 

When our older MaxEnt system is run, we use various 

thresholds to determine whether it is confident that a given 

relation exists.  This is not perceived of as ‘post-

processing’ for MaxEnt but rather as determining its best 

usage settings. We felt that a similar tuning/filtering 

approach should be applied here on the NRT’s output: such 

filtering could hopefully prune back any low-confidence 

relations that the transformer has proposed. 

Entity-Pair Probability Filtering.  As was said, the 

transformer predicts each output token one at a time.  For 

each relation generated, it predicts a starting entity offset, 

followed by an ending entity offset, and then predicts the 

relation it thinks connects those two offsets.  Suppose that 

it predicts #5 as the first offset and #7 as a second offset, 

but it is only 75% confident that #7 should follow #5.  

Perhaps this is insufficient as an entity-pair confidence and 

the whole predicted relationship should be thrown out. 

Only using entity pairs that the model is highly confident 

about has potential to improve relation quality. 

Relation Choice Probability Filtering.  Even if we suppose 

that the system is confident about an entity pair, the neural 

network may still not be very confident about the relation it 

has chosen to bind those two entities.  In such case, we may 

want to throw out those relations as well. 
 

 

Figure 3. Entity and Relation Filtering 
 

The illustration shown in Figure 3 illustrates how these two 

filters may be applied.  The system may receive the entity 

pairs depicted in the left of the image, but if we suppose 

that the threshold for acceptance is 0.95, the #5 #7 entity 

pair will need to be rejected.  Then, it may be that the #2 #3 

entity pair is assumed to be highly likely by the system, but 

the relationship that is proposed (“SameAs” in this case) 

has a probability that is too low for the relation threshold.  

Given these two settings, the final set of accepted relations 

are those shown in the right side of Figure 3. 

Table 3 shows the effects on weighted F-score of applying 

these two separate probability thresholds.  Setting an entity 

pair threshold of 0.95 with a relation threshold of 0.9 yields 

an additional 4.46% points of accuracy over NRT without 

any tuning – bringing the total gains over MaxEnt to 

25.54%. 
 

Model Entity 

Pair 

Thresh 

Relation 

Thresh 

F-score Delta 

MaxEnt N/A N/A 48.09 N/A 

NRT (Ours) - - 69.17 +21.08 

NRT (Ours) - 0.7 69.38 +21.29 

NRT (Ours) 0.9 - 73.29 +25.20 

NRT (Ours) 0.7 0.9 72.96 +24.57 

NRT (Ours) 0.9 0.9 73.26 +25.17 

NRT (Ours) 0.95 0.9 73.63 +25.54 

Table 3. Entity and Relation Probability Thresholding 
 

As can be seen from Table 3, thresholding on entity pair 

confidence is more important by far. Using only this 

threshold, with a setting of 0.9, we obtained a 4.12% 

absolute increase in F-score. This indicates that there were 

many cases where the model was generating relations when 

it was less confident that a given entity pair were even 

associated at all. The entity-pair threshold drastically 

pruned the extra erroneous relations that the untuned 

models were producing. We found it was a rapid way to 

refine and regularize the generated relations with very little 

logic required. 

Thresholding on relation type confidence proved only 

slightly useful. It contributed approximately 0.2% 

improvement to the F-score. We felt this was intuitive: if a 

model selects a “bad” entity pair, it may still be very 

confident in the relation that should connect them since 

there are relatively few relation types that make sense for 

two given entity types. From what we have observed so far, 

entity-pair confidence thresholding is required to ensure 

relation quality, but relation type thresholding seems to 

only clean up a small number of anomalous relations. 

4.3. Refinement #2: Class Filtering 

Another kind of filtering we had been using in the MaxEnt 

system was that it was only allowed to consider those 

relations that could “legally” exist between a given pair of 

entities.  For example, a relationship such as 

“IS_SUBDATE” which can only be applicable between 

temporal elements should not be allowed to have starting 

and ending entities like PERSON and LOCALE, 

respectively.  It seemed reasonable to apply these same 

kinds of constraints to the output of the NRT. 



There is, however, a scenario with the NRT that was not 

observed much with MaxEnt models.  Since we require the 

transformer of our system to have the first entity always 

precede the second (which we mentioned earlier in 

connection to reversed relations), it is possible that the 

system proposes the entities out of order.  For example, if 

the first entity is “DATE” and the second is “EVENT” and 

the relation is HAS_START_DATE, we possibly can 

conclude that the entities got accidentally reversed.  We 

define filtering templates to reverse entity positions when 

they appear to be in reversed order. 

Table 4 shows the effects of adding this consistency 

checking/class filtering.  We can see that both kinds of 

filtering help the system individually and that they are 

complementary and yield even a better result when used 

together.  With both probability thresholding and class 

filtering in place, our overall performance increases another 

0.6% in absolute F-score – yielding an overall absolute 

improvement of 26.14% above our MaxEnt models. 
 

Model Remove 

Malformed 

Relations 

Swap 

Reversed 

Relations 

F-

score 

Delta 

MaxEnt N/A N/A 48.09 N/A 

NRT (Ours) No No 73.63 +25.54 

NRT (Ours) Yes No 74.11 +26.02 

NRT (Ours) No Yes 73.98 +25.89 

NRT (Ours) Yes Yes 74.23 +26.14 

Table 4. Entity and Relation Probability Thresholding 
 

5. COMMENTS 

The final score for our transformer models is 74.23%, a 

26.14% absolute improvement – and a 54% relative 

improvement over our MaxEnt models. Again, this score 

is of each model in isolation, without downstream rules, 

auxiliary support processes, or complex refining logic. Our 

full MaxEnt system requires a great deal of handcrafted, 

complex logic for each language and record type to 

refine the generated relations so that they could be utilized 

by downstream processes. These new transformer models 

perform much better out-of-the-box on much larger variety 

of data, they save engineering time previously needed to 

integrate many models for different languages, and they 

reduce the engineering time previously needed to hand-

craft logic to refine relations. While logic and rules could 

still further refine the output of these models, such things 

are now less of a necessity and more of a “if desired.” 

In this effort, we had begun with a hope to replace MaxEnt 

as a relation-tagging mechanism with a newer kind of 

transformer-based relation tagger.  We demonstrated that 

this change has given us a sizeable boost in accuracy while 

at the same time providing a system that is able to handle 

languages more universally.  We have made use of these 

upgrades to successfully process tens of millions of 

historical Portuguese Civil Births.   

That said, the numbers we saw in Table 4, though better, 

still have room for improvement.  We are currently 

developing larger transformers that have been training on 

significantly more text and other textual phenomena as a 

means of potentially getting even bigger performance 

boosts in the near future. 
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