
Neural Genealogical Relation Tagging
 Patrick Schone and Wesley Ackerman
 {patrickjohn.schone,wesley.ackerman}@familysearch.org

 FamilySearch, 50 E North Temple, Salt Lake City, UT

ABSTRACT

We have created a neural network-based relation extraction

system which is able to work simultaneously in many

languages without the need for multiple models. This

capability extends recent advances in neural network

transformers and the actual methodology does not appear to

be in the literature. This neural relation tagger has greatly

advanced FamilySearch’s ability to mine unstructured

multilingual content and extract genealogical value that can

be presented to patrons. We describe the architecture of this

system and then illustrate its performance in the lab. Then,

and more importantly, we show how replacing our existing

relation-finding component with this transformer-based one

yields a substantial 54% relative performance gain.

1. BACKGROUND

For decades, volunteers and contractors have been engaged

in the practice of identifying facts and associations from

genealogical documents so as to make historical records

findable by individuals seeking their relatives. This

distillation process is typically referred to as “indexing.”

Over the past decade, indexing has moved from a shallow

and exclusively human-labeling effort to one which is

increasingly done to a faster and richer extent by machines.

One process for automatically mining content from

historical data is through entity and relation extraction [1].

Entity extraction identifies key elements of interest such as

persons, places, dates, occupations, etc. Relation extraction

seeks to discover any connections that should be drawn

between pairs of entities. For example, in relation

extraction, one could have an event and a date and declare

that the particular date is when the event started; or there

may be two persons and the system could report that the

second person is a father to the first person.

FamilySearch first started doing automatic indexing in

2015 as it applied entity and relation extraction to born-

digital obituaries [2]. Since then, FamilySearch has

branched into auto-indexing collections that first require

automatic transcription. That is, it has published automatic

indexes distilled from hundreds of millions of printed and

handwritten documents up to six centuries old in many

languages including English, Spanish, and Portuguese [3].

Even so, the publication of these huge volumes of

documents has come with significant struggle do in one

part from trying to use older, maximum entropy-based [4]

(MaxEnt) relation extraction technology which we had

designed originally for use with the modern English

obituaries that have no recognition errors nor parsing

issues. In the presence of errorful transcription in a variety

of genres and an ever-increasing number of languages, the

need for a more comprehensive and reliable relation tagger

was clear. Additionally, with the advent of transformers

[5], it seemed there should be a way to build a relation

tagger that could handle all languages simultaneously and

with higher overall accuracy.

We have been able to build an initial version of such a

system, and this paper describes its creation and its

application. We will also show how the system performs in

laboratory environments using concrete examples. Lastly,

and with greater importance, we show its impact on one of

our major operational tasks – auto-indexing of Portuguese

civil birth records – and how it in isolation yields a 54%

relative performance gain over using our previously-used

(MaxEnt) relation-finding component.

2. ARCHITECTURE

2.1 Data Preparation

Our neural relation system accepts as input five types of

information: the tokens themselves, the characters in those

tokens, any entity tags for those tokens, each entity’s zero-

up count in the given line of input (#0, #1, etc.) and, for

people, we also include name parsing information. We

sub-tokenize the input tokens using a process similar to the

Bert Tokenizer [6], and we align the other four types of

tags with their respective sub-tokens. Embeddings are then

created for each of these five sources of input and

concatenated into one master feature vector per sub-token.

The target output for each line of input is a sequence of

indexes and relation tags that would be desired from the

input text. For example, suppose the input text were

#0 Bob Jones was #1 born to #2 John Jones and to #3 his

#4 second wife , #5 Mary in #6 Provo , #7 Utah on #8 27

Feb 2023.

where colors indicate different entity classes, underline

indicates SURNAME, italics indicates a GIVEN_NAME,

and #n indicates the start of the nth entity in the input

sequence. In this situation, we want eleven relations to

emerge – that Bob Jones (#0) is the principal individual in

the article, that Bob has the birth_event of ‘born’ (#1), has

a father ‘John’ (#2) and has a mother ‘Mary’ (#5); that the

‘born’ event happened in ‘Provo’ (#6) on the ’27 Feb 2023’

(#8); that John (#2) is the referent of ‘his’ (#3) and that

John (#2) and Mary (#5) are spouses; that ‘his’ (#3) has a

familymember association with ‘second wife’ (#4); that

Mary (#5) is a member of the class of “second wife” (#4),

and that ‘Provo’ (#6) is a subplace of ‘Utah’ (#7).

We represent each of these relations in one single string by

providing the relative offset for the starting entity (#0, for

example), the ending one (eg., #1), and the relation

between them (eg., ‘has event’). This string of relations is

sorted by starting offsets followed by ending offsets and we

require that starting offsets are always less than or equal to

the ending offsets. For any relations where the end offset

should actually be before the start we replace such with a

reverse-form of that relationship (such as RevIsMember) so

that we can ensure that ends never precede starts. Also, for

equality-type relations, we augment the relations with the

entity tag types that start and end the relation (meaning

something like IsSamePerCor).

With these requirements, we can say that the desired

relationship output sequence for the previously-given text

should be:

#0 #0 IsPrincipal #0 #1 HasEvent #0 #2 HasFather

 #0 #5 HasMother #1 #6 StartPlace #1 #7 StartDate

#2 #3 IsSamePerCor #2 #5 HasSpouse #3 #4 HasFamMbr

#4 #5 RevIsMember #6 #7 IsSubplace.

The input and output sequences are also wrapped with a

[START] at the beginning and [END] at the end of the

particular sequence. “<empty>” is used as the target when

there are no desired relations.

Most transformers decode outputs one token at a time. If

successful, a transformer applied to the above text sequence

would be given an initial output sequence with only a

“[START]” tag and would autoregressively predict that #0

should follow it, followed next by another #0, and then by

IsPrincipal, and so forth until it reaches the “[END]” token.

When the system trains, we do not want it to get high

‘credit’ for only predicting a bunch of #n’s, so we alter the

loss and accuracy functions to account for entire triples

(two indexes plus corresponding relation) before counting

anything as correct.

2.2 System Design

We leverage elements of a three-layer neural transformer

(seen in Figure 1) to learn to predict relations given the

inputs. For our data, fewer or more than three transformer

layers yielded lower accuracies. We also say “leverage”

here because although we do exploit these encoders and

decoders as shown in the figure, we have a number of

differences that are worth commenting on.

2.2.1. Modified embeddings. The typical embedding layer

of a transformer, as shown in tan color in Figure 1, will

convert just tokens into a high-dimensional space. We

have elements, though, that go beyond tokens alone. We

have tokens, character streams, entity classes, name

chunks, and the #n relative entity offsets. We could treat

each of these as separate kinds of units and just do general

embeddings, but instead we create composite embeddings

that allow specific access to each of these five elements.

For example, as one possible instantiation, we may have a

total embedding size of 132 where 72 dimensions are token

embeddings, 24 dimensions are derived from LSTMs of

character embeddings, 16 dimensions are entity

embeddings, 4 are name chunk embeddings, and 16 are

entity offset embeddings. The size of ‘132’ is fairly small,

but this number actually works fairly well for our dataset.

Yet this in only one possible setup and other sizes may

work as well or better with different quantities of data. It is

also feasible to just use same-sized embeddings for each of

the features and add them together, but that is future study.

Figure 1: Key Elements of a 3-Layer General Transformer

2.2.2. Single encoder with multiple decoders. We found

that if we have a single transformer try to predict all the

relations, especially in a fairly data-starved environment,

many desired relations will be lost. Therefore, one

mechanism we used to combat this problem is to have a

single encoder but multiple decoders for all non-equality

relations. Particularly, we use three decoders. The first of

these focuses attention on personal and familial relations

such as the IsPrincipal, HasFather, HasMother,

HasFamMbr, and other similar relations. The second

focuses on relations that have to with events, such as

HasEvent, StartPlace, StartDate. The last of the three is

kind of a ‘catch-all drawer’ for the relationships that do

not fit into the other two categories – such as IsSubplace.

This triple decoder makes fewer errors than a single

decoder, and it is also slightly faster since each decoder’s

output sequence is shorter. On the other hand, this

methodology means that the family-member relation

decoder is not aware of what the event relation decoder is

doing, which may impact some results.

2.2.3. Skip sequences for equalities. Transformers work

with contiguous sequences of text under normal

circumstances. Such was the case with the elements

described in Section 2.2.2. However, if one separately

accounts for coreference/equality relations in a text (like

“his” = “Bob Jones”), then the vast majority of non-

equality relations can be discovered in relatively small text

sequences. On the other hand, it can be the case that

coreferential words can be separated by even thousands of

words. However, if, say “Bob Jones” at word 20000 is the

same as “Robert Jones” at word 1000, we probably do not

need a lot of the intervening information to make that

assessment. Instead, we just need to make sure that these

two words are in some sort of text sequence together. We

enable this capability by using “<SKIPx>” tokens in the

text where “SKIP” indicates to the transformer that it does

not get to see the intervening text and x is a integer-based

logarithmic distance to show how many tokens would have

been in that intervening sequence.

Therefore, for equality-style relations, we use yet another

three-level transformer – with a separate encoder and single

decoder – where the input sequences will include skips.

We usually include several words on either side of the skip

for this process. So the input to the system may be:

“Robert Jones, aged 37, <SKIP4> Bob’s wife of 10 years,

Harriet Jones …”

and the transformer will be asked if there are any equality-

style relations in the sequence. We do not allow SKIPs to

go across documents, so in this case, SKIP4 would suggest

that “Bob” and Robert are fairly close-by strings within the

same document. Our hope, in this case, is that it will

determine that Robert and Bob are likely the same. At

longer distances, this equality may not be as evident – but it

may also not be as relevant, either, for extracting the kinds

of genealogical content we are interested in.

2.3 Training Issues and Novelty

We train our relation tagger using 3.7M hand-labeled

relations in about 40 languages (though about 15 of these

languages dominate the collection). The system setups

vary but typically can be fully trained in 12-48 hours on a

GPU. The system learns its own weights currently though

we are exploring mechanisms for getting embeddings from

a much broader collection of texts and languages or from

large language models available on the web. “Embedding”

in this case does not mean “encoding” –it means the initial

input vectors to the system.

Before leaving the subject of architecture, it is worth

commenting on the novelty of this system. There have

been other transformer-based relation taggers (ex [7]).

Typically, these systems have the transformer predict what

relation or relations might exist between a given pair of

entities. However, we know of no relation-tagging system

that will simultaneously identify all the relations for a given

sequence as does ours (though [8] does simultaneous slot-

filling with transformers and some of our processes are

derived from that work). One-pass processing of relations

as described in our paper is highly desirable both for

accuracy and for speed, especially with a system like ours

which has roughly 90 entity types and 25 major relation

types where doing all pairs of entities would be unwieldy

and even identifying one relation at a time would still be

expensive.

3. PERFORMANCE: IN THE LAB

Figure 2. Entity tagged Spanish christening record

Transformers of this kind are trained by giving them the

input sequence and the full output sequence up to the point

of prediction. During actual inference, though, all outputs

must be predicted one at a time as was mentioned

previously. Thus, when we train, we achieve next-token

prediction triple accuracies above 93%. Yet when the full

sequence must be predicted, the average triple accuracies

decrease into the 70s. This may seem low, but many

relations are redundant and the primary need is to at least

find one instance of the relation correctly. Moreover, many

of the falsely-predicted relations are not “legal” in that the

entities that are paired should not produce the proposed

relations, so such relations can be filtered out. (This

filtering will be addressed later in this paper.) Additionally,

we tag using overlapped texts in most cases, so the

overlapped regions can help to identify relations that may

have gotten missed in one region but not in the other.

To illustrate performance, we use the entity-tagged text of a

Spanish christening record as seen in Figure 2 and apply

the neural relation tagger (NRT) to that text. The predicted

relations are shown below in Table 1. Relations that are

tagged in green are correct. Those in blue are redundant

and could be omitted. Purple indicates relations that were

missed.

As can be seen from Table 1, the results looks very

promising in this case – where almost all of the relations

are properly produced. In fact, we see that there are no

false alarms in this case, but there are the three missed

relations. There are also five relations which are redundant

which do not hurt performance but also do not add benefit.

These redundancies came because the system has the

separate modules for equality and non-equality, so it cannot

guarantee that these relationships are already there – and

thus it reports them twice.

From Table 1, we also see that the offsets are absolute

numbers here rather than zero-up relative offsets we have

been using up to this point. When we produce our input

strings to the transformer, we provide it with the relative

offsets and we store separately the relative-to-absolute

offsets. So after the transformer predicts something like #1

and #2, we can convert these to their true offsets such as 56

and 75.

Relation StartWord Offset End Word Offset

HAS FACT yo 56 Cura Párroco 75

RESIDENCE

PLACE
yo 56

San Rafael de

Bejuma
91

HAS FACT yo 56 Pbro. 471

HAS TITLE yo 56 Pbro. 471

STARTDATE bauticé 113
diesinueve de

marzo …

veinticuatro
3

STARTPLACE bauticé 113
San Rafael de

Bejuma
91

HAS FACT bauticé 113 18 495

STARTDATE nació 178 diesiseis de enero 187

SUBDATE OF
diesiseis de

enero
187 co-\nrriente año 210

HAS EVENT quien 229 bauticé 113

MEMBER OF quien 229 párvula 166

HAS EVENT quien 229 nació 178

SAME AS
Hercilia,\n

Gertrudis
251 quien 229

PRINCIPAL

PERSON

Hercilia,\n

Gertrudis
251

Hercilia,

Gertrudis
251

MEMBER OF
Hercilia,\n

Gertrudis
251 hija 272

HAS FATHER
Hercilia,\n

Gertrudis
251 José A. Barreto 289

HAS

MOTHER

Hercilia,\n

Gertrudis
251

María\nVictoria

de Barreto
307

HAS FACT hija 272 legítima 277

HAS_FAMLY
José A.

Barreto
289 párvula 166

HAS_FAMLY
José A.

Barreto
289 hija 272

SPOUSE
José A.

Barreto
289

María\nVictoria

de Barreto
307

SAME AS sus 341 quien 229

HAS_FAMLY sus 341 padrinos 345

MEMBEROF
Ramon\nMa

Hidalgo
354 padrinos 345

MEMBEROF
Rosalia de

Hidalgo
373 padrinos 345

MEMBEROF
Ramon\nMa

Hidalgo
354 quienes 394

MEMBEROF
Rosalia de

Hidalgo
373 quienes 394

SAME_AS
F.Monroy

Jiménez
477 yo 56

5xREDUND’T sus/Hercilia’s father, mother; yo/F.Monroy’s elemts

3xMISSING Familymbr(Rosalia,párvula/hija), Fact(Hercilia,18)

Table 1. Neural relation predictions on text from Figure 2

4. PERFORMANCE: THE REAL TASK

Although the lab results look beneficial, the true test is how

well the system performs on a real problem. Specifically,

how good do the predicted relations look when generated

for actual genealogical records? Do these models give us

significant gains over MaxEnt on a large-scale dataset of

fully structured records?

4.1. First Contact

It is said that no system survives first contact with real data,

so we expect an iterative process will be required to

optimize the use of these neural relations. Even so, Table 2

shows this ‘first contact’ performance of our system (NRT)

compared to the previous Maximum Entropy (MaxEnt)

baseline that we had formerly. In this situation, we run

both systems against a test set of 943 Portuguese-language

civil birth records that have been fully structured and

annotated for all names, dates, relationships, and places.

Performance is measured using a weighted F-score. Each

expected record element (e.g., name, date, place, event,

relationship type, relationship member, occupation, etc.) is

assigned a weight based on its estimated genealogical

relevance. Information on the main subject of the record is

weighted higher, and information about unrelated people is

weighted lower. Information about close family

relationships (parent-child, spouse, grandparent) and vital

events (birth, marriage, death) is valued more highly than

other types of relationship or event information.

These models are being tested in isolation, without any

fixes or post-processing applied to their outputs. When

using our older, original MaxEnt models, we obtained a

great deal of our quality by leveraging rules and other post-

processing steps. Yet the large improvements we show here

in weighted F-score (Table 2) indicate that our neural

relation tagger (NRT) models greatly improve relation

quality which decreases the need for post-processing to

make generated relations usable by downstream processes.

Model F-score Delta

Baseline (MaxEnt) 48.09 N/A

NRT (Ours) 69.17 +21.08

Table 2. First-Contact Replacement Attempt

As shown, there is a sizeable gain in performance using the

new models over the MaxEnt models. There is an absolute

gain of 21.08%, and this equates to a 41.45% increase in

relative accuracy. Moreover, the MaxEnt system that was

applied was trained exclusively on Spanish and Portuguese

records. Attempts to widen its training set to other

languages yielded poorer performance and more corrupt

relations. Our NRT model, on the other hand, includes high

volumes of relation-tagging data in English, Chinese,

Scandinavian languages, Russian, and other languages. Not

only does our model generate significantly higher quality

relations, but given these additional languages of training, it

is likely to be substantially more robust and capable of

operating well in these other languages without the need for

additional models.

4.2. Refinement #1: Probability Thresholding

Although the initial models perform much better than

MaxEnt, they are not without their problems. The most

prominent problem is a tendency to hallucinate additional

relations. These incorrect relations are often extra

occupations or residence-place facts, or erroneous parent-

child relationships that falsely connect different people in a

record. These incorrect relations often come associated

with lower probability scores from the transformer.

When our older MaxEnt system is run, we use various

thresholds to determine whether it is confident that a given

relation exists. This is not perceived of as ‘post-

processing’ for MaxEnt but rather as determining its best

usage settings. We felt that a similar tuning/filtering

approach should be applied here on the NRT’s output: such

filtering could hopefully prune back any low-confidence

relations that the transformer has proposed.

Entity-Pair Probability Filtering. As was said, the

transformer predicts each output token one at a time. For

each relation generated, it predicts a starting entity offset,

followed by an ending entity offset, and then predicts the

relation it thinks connects those two offsets. Suppose that

it predicts #5 as the first offset and #7 as a second offset,

but it is only 75% confident that #7 should follow #5.

Perhaps this is insufficient as an entity-pair confidence and

the whole predicted relationship should be thrown out.

Only using entity pairs that the model is highly confident

about has potential to improve relation quality.

Relation Choice Probability Filtering. Even if we suppose

that the system is confident about an entity pair, the neural

network may still not be very confident about the relation it

has chosen to bind those two entities. In such case, we may

want to throw out those relations as well.

Figure 3. Entity and Relation Filtering

The illustration shown in Figure 3 illustrates how these two

filters may be applied. The system may receive the entity

pairs depicted in the left of the image, but if we suppose

that the threshold for acceptance is 0.95, the #5 #7 entity

pair will need to be rejected. Then, it may be that the #2 #3

entity pair is assumed to be highly likely by the system, but

the relationship that is proposed (“SameAs” in this case)

has a probability that is too low for the relation threshold.

Given these two settings, the final set of accepted relations

are those shown in the right side of Figure 3.

Table 3 shows the effects on weighted F-score of applying

these two separate probability thresholds. Setting an entity

pair threshold of 0.95 with a relation threshold of 0.9 yields

an additional 4.46% points of accuracy over NRT without

any tuning – bringing the total gains over MaxEnt to

25.54%.

Model Entity

Pair

Thresh

Relation

Thresh

F-score Delta

MaxEnt N/A N/A 48.09 N/A

NRT (Ours) - - 69.17 +21.08

NRT (Ours) - 0.7 69.38 +21.29

NRT (Ours) 0.9 - 73.29 +25.20

NRT (Ours) 0.7 0.9 72.96 +24.57

NRT (Ours) 0.9 0.9 73.26 +25.17

NRT (Ours) 0.95 0.9 73.63 +25.54

Table 3. Entity and Relation Probability Thresholding

As can be seen from Table 3, thresholding on entity pair

confidence is more important by far. Using only this

threshold, with a setting of 0.9, we obtained a 4.12%

absolute increase in F-score. This indicates that there were

many cases where the model was generating relations when

it was less confident that a given entity pair were even

associated at all. The entity-pair threshold drastically

pruned the extra erroneous relations that the untuned

models were producing. We found it was a rapid way to

refine and regularize the generated relations with very little

logic required.

Thresholding on relation type confidence proved only

slightly useful. It contributed approximately 0.2%

improvement to the F-score. We felt this was intuitive: if a

model selects a “bad” entity pair, it may still be very

confident in the relation that should connect them since

there are relatively few relation types that make sense for

two given entity types. From what we have observed so far,

entity-pair confidence thresholding is required to ensure

relation quality, but relation type thresholding seems to

only clean up a small number of anomalous relations.

4.3. Refinement #2: Class Filtering

Another kind of filtering we had been using in the MaxEnt

system was that it was only allowed to consider those

relations that could “legally” exist between a given pair of

entities. For example, a relationship such as

“IS_SUBDATE” which can only be applicable between

temporal elements should not be allowed to have starting

and ending entities like PERSON and LOCALE,

respectively. It seemed reasonable to apply these same

kinds of constraints to the output of the NRT.

There is, however, a scenario with the NRT that was not

observed much with MaxEnt models. Since we require the

transformer of our system to have the first entity always

precede the second (which we mentioned earlier in

connection to reversed relations), it is possible that the

system proposes the entities out of order. For example, if

the first entity is “DATE” and the second is “EVENT” and

the relation is HAS_START_DATE, we possibly can

conclude that the entities got accidentally reversed. We

define filtering templates to reverse entity positions when

they appear to be in reversed order.

Table 4 shows the effects of adding this consistency

checking/class filtering. We can see that both kinds of

filtering help the system individually and that they are

complementary and yield even a better result when used

together. With both probability thresholding and class

filtering in place, our overall performance increases another

0.6% in absolute F-score – yielding an overall absolute

improvement of 26.14% above our MaxEnt models.

Model Remove

Malformed

Relations

Swap

Reversed

Relations

F-

score

Delta

MaxEnt N/A N/A 48.09 N/A

NRT (Ours) No No 73.63 +25.54

NRT (Ours) Yes No 74.11 +26.02

NRT (Ours) No Yes 73.98 +25.89

NRT (Ours) Yes Yes 74.23 +26.14

Table 4. Entity and Relation Probability Thresholding

5. COMMENTS

The final score for our transformer models is 74.23%, a

26.14% absolute improvement – and a 54% relative

improvement over our MaxEnt models. Again, this score

is of each model in isolation, without downstream rules,

auxiliary support processes, or complex refining logic. Our

full MaxEnt system requires a great deal of handcrafted,

complex logic for each language and record type to

refine the generated relations so that they could be utilized

by downstream processes. These new transformer models

perform much better out-of-the-box on much larger variety

of data, they save engineering time previously needed to

integrate many models for different languages, and they

reduce the engineering time previously needed to hand-

craft logic to refine relations. While logic and rules could

still further refine the output of these models, such things

are now less of a necessity and more of a “if desired.”

In this effort, we had begun with a hope to replace MaxEnt

as a relation-tagging mechanism with a newer kind of

transformer-based relation tagger. We demonstrated that

this change has given us a sizeable boost in accuracy while

at the same time providing a system that is able to handle

languages more universally. We have made use of these

upgrades to successfully process tens of millions of

historical Portuguese Civil Births.

That said, the numbers we saw in Table 4, though better,

still have room for improvement. We are currently

developing larger transformers that have been training on

significantly more text and other textual phenomena as a

means of potentially getting even bigger performance

boosts in the near future.

REFERENCES

 [1] Grisham, R. & Sundheim, B. (1996). Message under-

standing conference -6: A brief history. 16th conference

on Computational Linguistics (pp. 466-471).

[2] Schone, P. & Gehring, J. (2016). Genealogical Indexing

of Obituaries Using Automatic Processes. FHTW.

https://fhtw.byu.edu/static/conf/2016/schone-indexing-

fhtw2016.pdf

[3] Schone, P. (2020). Economical bimodal classification of

a massive heterogeneous document collection. FHTW.

https://fhtw.byu.edu/static/conf/2020/schone-

economical-presentation-fhtw2020.pdf

[4] McKallum, A.K. (2002) MALLET: A machine learning

for language toolkit. http://www.cs.umass.edu/mallet

[5] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,

Jones, L., Gomez, AN, Kaiser, L., Polosukhin, I.

(2017) Attention is all you need. NIPS.

[6] Devlin, J., Cheng, MW, Lee, K., Toutanova, K. (2019)

BERT: Pre-training of deep bi-directional transformers

for language understanding. ACL (pp. 4171-4186).

[7] Zhong, Z., Chen, D. (2021). A frustratingly easy

approach for entity and relation extraction. ACL (pp.

50-61).

[8] Kerman, S. (2022). Internal communications (SWFTY,

Transformer-based Slot Filling), FamilySearch.

