Genealogical Place Name Normalization

Bob Leaman
(bob.leaman@asu.edu)
What is meant by “Normalization”?

- Enforcing a standardized representation
- Increases accuracy
 - Data shared over e-mail can be very hard to correct
- Easier record linkage
 - Automated merging
 - Automated research
What format to use?

- **Fixed three-level**
 - *Mesa, Maricopa, Arizona*

- **Variable-level**
 - *Mesa, Maricopa, Arizona, United States*

- *Note absence of descriptors*
 - “Of”, “Near”, etc.
The Problem

What kinds of deviations from the standard are common?

- Biographical notes
 - Johnsville, Arkansas. He had 6 children
- Addresses and e-mails
- Hospital, church and cemetery names
 - Bluff Cemetery, Elgin, Ill. → Elgin, Ill.
- Leaving out one or more of the levels
 - Vancouver, Washington → Vancouver, Clark, Washington, United States
The Problem

• Excluding the comma between two of the place names
 • San Leandro CA → San Leandro, CA

• Using an abbreviated, truncated, or alternate form of a place name
 • UT → Utah
 • Tenn → Tennessee
 • Holland → Denmark

• Misspelling place names
 • Ypfilanti, Washtinaud, Michigan → Ypsilanti, Washtenaw, Michigan

• Algorithmic contractions such as removing all vowels after the first letter
 • Oxfrd → Oxford
Strategy

• Preprocessing – remove everything that is not part of the place name
• Match against a name variations database (thesaurus)
• Match against standardized names database (gazetteer)
Preprocessing Place Names

• Use regular expressions to detect patterns

• 38th year, Benedict, Kansas. Buried High Prairie Cem, Wilson, Kansas
 becomes

• 38th year, Benedict, Kansas.
 becomes

• Benedict, Kansas

• List of “note words” (e.g. occupations, causes of death, etc.)
Preprocessing Place Names

• Tested on 2450 randomly selected “PLAC” fields from 10 different GEDCOM files
• Each was preprocessed by hand: 58.4% required modification
• Preprocessing via the system matched preprocessing by hand 97.6% of the time
Handling Name Variations

• At this point all non-place name information has been removed
• Each place name is looked up in a database of alternate names (thesaurus)
 • *Livonia, MI* → {Livonia, MI & Livonia, Michigan}
• The original is included in case the wrong alternate was recorded originally
Place Name Matching

• **Created a place name database**
 • Mostly GNIS data
 • Includes all of the United States and some of England and Canada
 • Nearly 160,000 places

• **Database format**
 • A single table was used to hold all place records
 • Utilized unique identifiers to point to the “parent” record
Place Name Matching

• Need to find the place name in the database that maximizes the “similarity” with respect to the input place name
 • 0 = no match
 • 1 = perfect match

• Calculated using the average “similarity” of the individual pieces of the place name
Place Name Matching

- Used the elements of the edit distance metric
 - Substitution, insertion, deletion
 - Added transposition, length of the longest common substring & a measure of truncation
- Sorted through the several data points per potential match with a decision tree
 - Trained using the metric scores from a test set of place name pieces matched by hand
 - SLk, Salt Lake, TRUE
- Used the proportion of test cases that were matches in any leaf of the tree as the “similarity” score
Place Name Matching

• Tested on 330 randomly selected “PLAC” fields from 10 different GEDCOM files
• Each was preprocessed and matched by hand: 99.1% required modification after preprocessing
• The first-ranked match was the same as the match found by hand 97.9% of the time
• The average rank of the match generated by hand was 1.21
Future Directions

- Recognize when the best match is not satisfactory
- Acquisition of a suitable thesaurus and gazetteer
 - Alexandria Digital Library Project
- Historical place information
- Increased productization
 - Indexing scheme
- Internationalization
Questions?