AI Assessment

“[Various aspects of] artificial [intelligence] … have skewed off … to find specialized niches …

“Text recognition and document scanning are … beginning to provide a significant new input medium for computer systems.

“… the original vision of creating a true, humanlike intelligence that started so much of this research remains as unrealized as ever.”

Hogan, *Mind Matters*, p. 199
Distance Assessment

- Overall AI assessment
- FH domain
 - Match / Merge Consolidation
 - Non-FH domains
 - Contrast FH and classical AI applications
 - Contrast machine and human methods
 - Corridor methods
<table>
<thead>
<tr>
<th>KELLOGG</th>
<th>KELLOGG</th>
<th>KELLOGG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moses</td>
<td>Moses</td>
<td>Moses</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>b Massachusetts</td>
<td>b</td>
<td>b Massachusetts</td>
</tr>
<tr>
<td>m Lydia KELLOGG</td>
<td>m Mary SHELDON</td>
<td>m 30 Apr 1740</td>
</tr>
<tr>
<td>m about 1748</td>
<td>m</td>
<td>m</td>
</tr>
<tr>
<td>d</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>d Massachusetts</td>
<td>d</td>
<td>d Massachusetts</td>
</tr>
<tr>
<td>FISHER</td>
<td>FISHER</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>William</td>
<td>William</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>b Devon, England</td>
<td>b Devon, England</td>
<td></td>
</tr>
<tr>
<td>m Sarah Warren</td>
<td>m Sarah Gadd</td>
<td></td>
</tr>
<tr>
<td>m 1 Apr 1849</td>
<td>m 11 Jan 1869</td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td>d Nephi, Utah</td>
<td>d probably Idaho</td>
<td></td>
</tr>
</tbody>
</table>
Family History versus Classical AI

- Recorded with intent
- No resampling possible
- Missing / occulted data
- Definitive structure
 - complexity in resolving issues
- Back story

... back story

... back story
Three Images
Three Images
Three Images
Three Top Strips
Three Middle Strips
Short Image Sequence
Long Sequence
Missing Elements: Occultation

- Human visual field
 - unifying fragments
- McCloud
 - closure
- Restak
 - fill-in
- Hogan
 - emergent properties
Missing Elements: Closure

- Human visual field
 - unifying fragments
- McCloud
 - closure
- Restak
 - fill-in
- Hogan
 - emergent properties
Compare: machine, human

Classical AI
- High Leverage
- Strong Methods
- Very Precise Criteria
- Exacting Evaluation
- Reductivistic
 - simplicity
 - Occam
- Uncertainty
 - handled as defect

Classical Human
- Low Leverage
- “Weak” Methods
- Imprecise Criteria
- Arbitrary Evaluation
- Non-reductivistic
 - complexity
 - Rube Goldberg
- Uncertainty
 - Fill in missing data
 - Closure
Contrast: machine, human

Classical AI
- Syntactic methods in pattern recognition
- Statistic methods in pattern recognition
- Self-Organizing systems
- Image processing
- Feature extraction
- Symbol manipulation / LISP / List Processing
- Pattern matching
- Games / Decision Trees / Searches
 - pruning
 - combinatorix
- Chess / Music / Mathematics
- Data mining
- Dualism / Pumps
- Natural languages / Translation
 - Eliza
- Semantic nets / associative nets
- Neural nets
- Self-modifying code / Genetic programming
- Models / Metaphors / Analogies / Parallels
- Distances / Models / Methods / Contexts
- Probabilities
 - Bayes theorem

Classical Human
- Limited by time, money, energy, patience
- Persistence
- Comparison
- Parallels, metaphors, models, analogies
- Negotiation
 - concession ladder
- Tool collectors
- Common sense
- Expectation
 - foresight
- Belief
New Taxonomy within AI

• Handling of Missing / Occulted data
• Concentration / Distribution of Features
• Graphical and symbolic processing
 – Blurring the borderline
• Parallelism / Metaphors
• Limited Reductivism
• Holographic

leads to
• Corridor Methods
Conclusions

• Artificial Intelligence
 – niche applications
 – no generalized solutions

• Unique human “fill-in” ability
 – deal with hidden / occulted data
 – reach closure

• Corridor Methods