Using Structured Neural Networks for Record Linkage

Burdette Pixton
Christophe Giraud-Carrier

Record Linkage

- Record Linkage is:
 - the process of identifying similar people
 - a necessary step in exchanging and merging pedigrees

Record Linkage – General Process

- General Process
 - Compare attributes
 - Surname_A vs. Surname_B
 - Use String Metrics (jaro, soundex, etc..)
 - Quantify the comparison (score)
 - Rule-based
 - Use metric score
 - Combine the scores
 - Rule-based
 - Neural Network
 - Compare against a threshold

MAL4:6

- Mining And Linking FOR Successful Information eXchange
 - An automatic approach
 - MAL4:6 uses relationships found in pedigrees
 - Traverses both pedigrees in parallel and measures the similarity of each instance
 - Individual_A vs Individual_B and Father_A vs Father_B, etc...

Version 0.1

- Focused on
 - Comparing the attributes
 - Quantifying the comparison
- Naively
 - Combined the scores (Average)
 - Compared against a threshold

Version 0.1

 Similarities are computed using a heterogeneous metric system

Attribute Type	Metric
Gender	Binary Discrimination
Name	Soundex
Location	Jaro
Day	1-norm
Month	Dice
Year	1-norm

Version 0.1 Definitions

- Attributes: A = {A₁,A₂,...A_n}, A_i would be a piece of information (e.g., date of birth)
- For each A_i, sim_{Ai} is the similarity metric associated with A_i
- Let $x = \langle A_1 : a_1^x, A_2 : a_2^{x,...,} A_n : a_n^x \rangle$ denote an individual where a_i^x is the value of A_i for x
 - <firstname: John, lastname: Smith,...>
- Let R= {R₀,R₁,...R_m} be a set of functions that map an individual to one of its relatives
- $\alpha_{ij} = \{0,1\}$

$$sim(x,y) = \sum_{i=0}^{p} \sum_{j=1}^{n} \alpha_{ij} sim_{A_j} (A_j^{R_i(x)}, A_j^{R_i(y)})$$

Version 0.1

- Matches:
 - □ Recall = 94.2%, Precision = 71.8%
- Mismatches
 - □ Recall = 86.2%, Precision = 98.4%

Version 0.1 Challenges

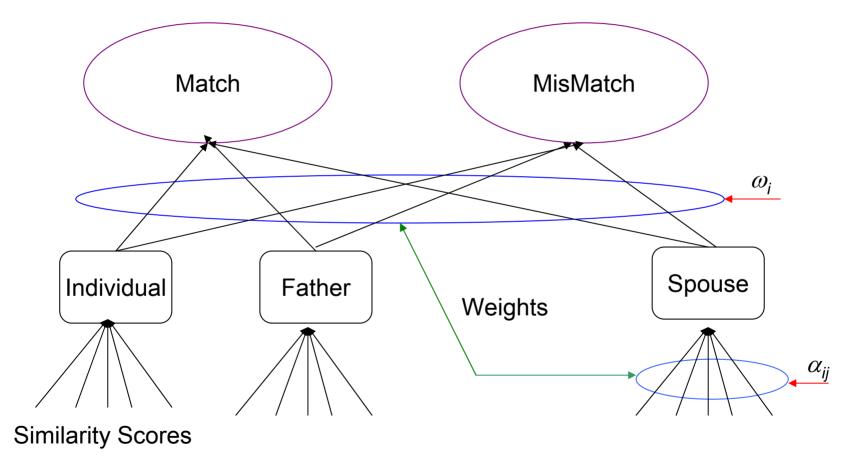
- Each relationship/attribute is treated equally
- Weights
 - Version 0.1 used feature selection instead of continuous weights
 - Weights would allow MAL4:6 to use all of the data in a pedigree to a degree (TBD by MAL4:6)
- Naturally Skewed Data
 - #NonMatches >> #Matches
 - Learners tend to over learn the majority class

Version 1.0 Definitions

- Problem 1: Each relationship/attribute is treated equally
- Attributes: $A = \{A_1, A_2, ..., A_n\}$, A_i would be a piece of information (e.g., date of birth)
- For each A_i, sim_{Ai} is the similarity metric associated with A_i
- Let $x = \langle A_1 : a_1^x, A_2 : a_2^{x,...,} A_n : a_n^x \rangle$ denote an individual where a_j^x is the value of A_i for x
 - <firstname: John, lastname: Smith,...>
- Let R= {R₀,R₁,...R_m} be a set of functions that map an individual to one of its relatives
- ω_i and α_{ij} are continuous

$$sim(x,y) = \sum_{i=0}^{p} \underline{\omega_i} \sum_{j=1}^{n} \underline{\alpha_{ij}} sim_{A_j} (A_j^{R_i(x)}, A_j^{R_i(y)})$$

Structured Neural Network Learning Weights (Problem 2)



Blocking/Filtering

- Problem 3: Naturally Skewed Data
- Blocking
 - Typically done on preprocessed data to reduce obvious non-matches
 - Extended Blocking/Filtering
 - Use a series of structured neural networks
 - After each training-testing phase (pass), eliminate "obvious" instances of the majority class

Filtering Definitions

- Let $T = M \cup m$ be the training set, where M is the set of pairs from the majority class and m is the other class
- MATCH(x) is the value of the match output node when x is presented
- MISMATCH(x) for the mismatch output node

Filtering Definitions

If q is a pair to be classified, then its ratio r is

$$r = \frac{MATCH(q)}{MISMATCH(q)}$$

Thresholds

$$\delta_{M} = \frac{1}{|M|} \sum_{x \in M} \frac{MATCH(x)}{MISMATCH(x)} \qquad \delta_{m} = \frac{1}{|m|} \sum_{x \in m} \frac{MATCH(x)}{MISMATCH(x)}$$

Filtering Definitions

- If match is the majority class (M)
 - \Box An instance is classified as a match if $r > \delta_{M}$
- If mismatch is the majority class (M)
 - \Box An instance is classified as a mismatch if $r < \delta_{M}$
- Remaining instances are inputted into a new structured neural network
- When a test instance is classified
 - True/false positive/negative rates are calculated
 - These rates are propagated to future networks
- Each element is classified
 - Elements between the thresholds are classified as M
 - Rates from previous networks are computed with current rates to obtain overall performance indicators

Experimental Setup

- Genealogical database from the LDS Church's Family History Department (~5 million individuals)
- ~16,000 labeled data instances
 - Created a training set and test set for distributions of 1:1 and 1:100
 - Pre-blocked (each instance is "close")
 - 1:100 not likely to occur but used for experimental purposes

Balancing the distributions

Original	Pass 1	Pass 2	Pass 3	Pass 4	Pass 5
1:100	1:79.7	1:28.9	1:3.18		
1:1	1:.042	1:4.45	1:2.59	1:1.42	1:2.47

Precision/Recall

	No	Pass	Pass	Pass	Pass	Pass
	Filtering	1	2	3	4	5
1:100	25.0/ 33.3	70.0/ 33.3	44.4/ 85.7	44.4/ 85.7		
1:1	80.3/	91.6/	91.4/	88.0/	88.6/	88.9/
	81.6	85.7	86.7	94.0	93.5	93.8

0.1 vs. 1.0

	Version 0.1	Version 1.0	
Distribution	1:3	1:1	
Generations	8 (4 up, 4 down)	3 (3 up)	
Precision	71.8%	88.9%	
Recall	94.6%	93.8%	

Future Work

- Structured Neural Networks allow us to look into the "why"
- Compare networks at different distribution layers