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Abstract— Genealogy research is centered on collecting
records about an individual from various sources and com-
bining the information to gain a larger historical perspective
about that individual, commonly in the form of a pedigree. Data
extraction, the internet, and other technological advancements
have made large amounts of digital genealogical data more ac-
cessible. Discovering the relevancy of a digital record to a given
pedigree involves determining if the individual described in the
record is in actuality an individual within the pedigree. This
process is called Genealogical Record Linkage (GRL). GRL can
be automated through data mining and techniques by creating
machine learned models from hand labeled comparisons. In
this paper, we compare two such models-a tabular approach
and a graph based stacking approach-and report the successful
application of both on a large, post-blocking database. We
also note the successful integration of these approaches in an
open source distributed genealogy program that finds relevant
machetes to a given pedigree from multiple online repositories.

I. I NTRODUCTION

At the core of genealogical research is the process of
gathering related information from multiple sources and com-
bining the information to gain a larger historical perspective.
For example, birth, death, and marriage certificates can be
combined to show a basic timeline of events for individual,
the individual’s parents, spouse, etc. Further information
can be combined to form entire pedigrees, detailing many
generations of ancestry and progeny.

Current technological advancements have contributed to an
explosion in the amount and availability of digital genealogi-
cal information. Data extraction, optical character recognition
(OCR), and other digitization techniques create many new
records daily. Many internet sites make large repositories of
genealogical information readily available to the public. With
so many resources, finding and combining relevant informa-
tion from multiple sources becomes a difficult problem. Data
entry errors, unstandardized abbreviations, and discrepancies
between sources further complicates the problem. For ex-
ample, two records may have drastically different birthdays
and names, but the records refer to the same person. In
this paper, we address part of this problem: the need for
an automated approach in determining the relevancy of a
piece of genealogical information to a given pedigree. This
approach is based upon record linkage.

Record linkage consists of discovering records such that
records that are believed to refer to the same entity are treated
as a single entity. Excellent overviews of techniques and
research issues relevant to record linkage in general are in [9],

[27]. In this paper, we focus on genealogical record linkage
(GRL).

GRL is significant to genealogical research because it
consolidates and links numerous databases, resulting in con-
densed search results that have a broad range of highly
related information. GRL also helps genealogical researchers
identify where their work overlaps with the work of others.
Furthermore, GRL has application in medical genetics, where
researchers identify the heredity of diseases and disorders
such as cancer, Hunington’s disease and febrile seizures,
using medical pedigree charts [6], [2], [22], [13].

GRL differs from other record linkage problems in the
quantity and nature of the attributes used to represent entities.
Where most record linkage projects have records that consist
of a small and finite number of densely populated attributes,
GRL tends to have an infinite number of attributes. Com-
paring two records involves comparing only their common
attributes, which results in sparsely populated, multi-valued
comparisons. For example, an individual can have multiple
spouses (due to remarriage, etc.), many children, many sib-
lings, and a vast posterity and ancestry, each with numerous
attributes.

In this paper we compare two data mining approaches to
GRL both based on creating machine learning models from
hand labeled comparisons. The first approach comes from
our prior work, a Metric Based approach to Genealogical
Record Linkage (MBGRL) [10], [11]. In this approach, each
element of a pedigree pair was compared and scored using
a similarity metric and inserted into a table. A machine
learning model was then created using this table. In this
paper we present an alternative approach: a Stacked Graph-
based approach to Record Linkage (SGRL). In this method a
pedigree is represented by a unidirectional graph. By utilizing
the hierarchal nature of the graph, higher order metrics are
made from basic comparators through stacking. Results on
a large genealogical database show higher f-measure and
accuracy for the graph-based approach.

II. D EVELOPING AND CHOOSINGCOMPARISONMETRICS

Most genealogical record linkage problems involve com-
parisons among primarily four types of basic data types:
name, gender, date, and location. Combinations of these basic
types can then form aggregates and collections of aggregates.
A wide variety of metrics were tested in each of these basic
comparison areas for both MBGRL and SGRL. To determine



which metrics was most appropriate on each data type, a
metric performance evaluation was performed, as follows:

A. Metric Performance Evaluation Criteria

All metrics in a comparison category (name, date, location,
etc.) were compared with each other using the following
three criteria.

• Information Gain. The formula for information gain is
given by:

Entropy(S) = −pM log pM − pm log pm

Gain(S,A) = Entropy(S)−
∑

v∈VA

|Sv|
|S|
Entropy(Sv)

where S is the collection of normalized scores a
particular comparison metric generates (together with
their associated target value),pM is the proportion of
matches, andpm is the proportion of mismatches,VA
is the set of possible values of attributeA, andSv =
{s ∈ S : A(s) = v} (the subset ofS where attribute
A has valuev). Information gain measures how well
a given attribute (consisting of the results of a metric
comparison) separates the training data according to its
target classification (match, mismatch).

• F-score. The formula for F-score is given by:

Precision =
TP

TP + FN

Recall =
TP

TP + FP

F -score =
2× Precision×Recall
Precision+Recall

whereTP is the number of true positives (i.e., correctly
labeled matches),FN is the number of false negatives
(i.e., matches incorrectly labeled as matches), andFP
is the number of false positives (i.e., mismatches incor-
rectly labeled as matches). The F-score tries to combine
precision and recall into a single measure. F-scores were
calculated using 10-fold cross-validation.

• Overall Accuracy. The overall accuracy is simply the
ratio of the number of correctly labeled pairs to the total
number of pairs in the training set. Overall accuracy was
computed using 10-fold cross-validation.

A metric was considered to be superior only if it outper-
formed the other metrics in its category on all 3 of the above
criteria

B. Metric Performance Evaluation Results

A number of metrics were tested for each basic data type
and evaluated based on the criteria of the previous section.
The following comparison metrics were found to be superior
in their respective comparison groups.

TABLE I

NAME COMPARISONMETRIC SCORES

Comparator Metric Accuracy F-Score I-Gain
NamesNeuralNet 91.5% .85 .461
JaroWinkler 89.7% 0.821 0.412
EnsembleCJMN 89.2% 0.8 0.368
EnsembleOfEditDistance 88.7% 0.79 0.354
NeedlemanWunch 87.6% 0.76 0.32
ChapmanMatchingSoundex 80.3% 0.695 0.242

1) Name Comparison Metric:The two most common
categories of metric-based approaches for comparing names
are phonetic comparisons algorithms and pattern comparison
matching algorithms. Common phonetic algorithms we ex-
plored include: Soundex [29], Chapman Soundex, Phonex
[14], Phonix [7], and Double-metaphone [24]. Common
pattern and edit distance based algorithms we explored
include: Levenshtein [18], Needleman & Wunch, Monge-
Elkan [17], and Jaro-Winkler [12]. A weighted ensemble
of some of the above string metrics —Monge-Elkan, Jaro-
Winkler and ChapmanSoundex— was also tested. These
comparators have consistently shown high accuracy on name
matching tasks [3], [23]. Scores were calculated using the
name comparisons of the base individuals in 10,349 labeled
pedigree pairs. An aggregate name comparator was created
using outputs from various metrics as inputs into an artificial
neural network. Accuracy, f-score, and information gain are
shown in Table I. A precision-recall curve for the highest
scoring metric, the name neural network, is shown in figure
1.

Fig. 1. Precision Recall Curve of Neural Network Name Comparison

2) Date Comparisons Metric:Three types of date com-
parators were originally evaluated. First, various edit distance



TABLE II

DATE COMPARISONMETRIC SCORES

Comparator Metric Accuracy F-Score I-Gain
NeuralNetDates 91.4% .856 .473
DateDifference 89.9% .833 0.429
EnsembleEditDist 89.6% .83 0.429
EnsembleCJMN 89.5% .828 0.426
JaroWinkler 89.5% .828 0.426
NeedlemanWunch 89.4% .829 0.431

based metrics were used which made allowances according to
common data recording errors. For example, the comparison
of 21 June 1800 and 12 June 1800 will score slightly lower
(having a greater probability) than 10 June 1800 and 19
June 1800, because the common error of reversing date
digits implies a slightly higher probability of being a match
(i.e., it is more likely that “21” matches “12” than that
“10” matches “19”, even though the difference in number of
days is the same. Second, time based comparators in which
a similarity score is calculated primarily according to the
absolute value of the difference in number of days between
the two dates. For example 1 June 1800 and 10 June 1800
would conceptually result in a score of 9 because there is
a 9-day difference between the two dates. Hence, a score
of 0 means an exact match and a high score implies a low
probability that the two dates match. Finally, an aggregate
date comparison type was created as a combination of these
metrics as inputs into an artificial neural network, since
the metrics preform differently on different examples. This
combination date comparator had the highest accuracy, f-
measure, and information gain as shown in table II, and its
precision recall graph is shown in figure 2.

Fig. 2. Precision Recall Curve of Neural Network Date Comparison

3) Location Comparison Metric:As stated earlier, the
locations in the dataset have already been standardized.

TABLE III

LOCATION COMPARISONMETRIC SCORES

Comparator Metric Accuracy F-Score I-Gain
LocationsNeuralNet 79.6% .566 .138
EnsembleEditDistance 66.7% 0.048 0.006
EnsembleCJMN 66.4% 0.048 0.007
GeoLocationComparator 35.3% 0.401 0.002
JaroWinkler 34.3% 0.198 0.074
NeedlemanWunch 30.0% 0.21 0.091

This means that misspellings, variations and abbreviations
have been previously resolved to actual locations (past and
present). Location strings are compared initially to see if
there is an exact match, assuming all four parts of a location
are present (i.e., city, county, state, and country). If they are
not a match, traditional string comparison metrics are ren-
dered useless because the location names have already been
standardized. For example, it makes no sense to compare
the string similarity of “Manhattan” and “New York City.”
Instead, a physical distance metric was created.

Using Yahoo Maps online services, literal distances are
calculated between two locations (cities). Using a physical
distance metric allows for greater sensitivity of determining
common data entry errors. For example, one birthplace may
erroneously list a larger city like Salt Lake, rather than
the actual suburb, like Sandy. Another common location
discrepancy exists between a pedigree that lists the city of the
hospital an individual was born in, and another pedigree lists
the city the individuals parents lived in when the individual
was born (e.g., someone was born at the Provo hospital, but
lives in and is from Orem).

Over a period of time, a database was created with every
unique location in the database and its corresponding geo-
coordinates. Distances were calculated as follows.

D = r.[sinLa1. sinLa2+cosLa1. cosLa2. cos(Lo2−Lo1)]

wherer is the radius of the earth in kilometers,La is latitude
in radians, andLo is the longitude in radians. Over 94% of
the locations could be resolved to coordinates (the remainder
are cities that no longer exist, are not yet indexed by yahoo,
etc).

This standardized, literal-distance location metric shows
minor improvements in performance when compared to
edit distance string comparison metrics. This metric is also
‘future-friendly’, as many genealogy programs allow users
to enter GPS coordinates for locations, such as grave sites
[1]. When used in combination with other string comparison
metrics, higher performance levels are achieved, as shown
in table III. However, location attributes are less indicative
of the target value, and so only low levels of precision and
recall were achieved (see Figure 3).

III. STRUCTURE DIFFERENCES INMBGRL AND SGRL

In GRL, a record is a pedigree consisting of a base
individual, his/her siblings, spouse, progeny and ancestry, all
with basic information about major lifetime events including



Fig. 3. Precision Recall Curve of Neural Network Location Comparison

dates and places. GRL primarily focuses on determining
whether or not a genealogical record refers to the same
person as the base individual of a pedigree. In each case,
the genealogical record can be treated as a partial pedigree.
Each pedigree in such a comparison may be very unique due
to spelling errors, data entry errors, variations between two or
more databases, missing values, etc. As such, GRL considers
more than exact-match pedigrees; it considers pedigrees that
may differ drastically, but in actuality refer to the same
individual. Both MBGRL and SGRL utilize the same basic
comparison metrics listed above. However, they are very
different in structure. MBGRL utilizes a “flat table” approach
where every basic information type in a pedigree is compared
with its corresponding basic information type on another
pedigree, and the result of each comparison becomes an
attribute in an instance row of the table. For example, the
comparison score of the individuals name becomes the first
attribute, the fathers’ name comparison score becomes the
second, etc. This results in sparse table with a large number
of attributes. Due to the sparesness of many attributes, any
chosen machine learning algorithm will be sensitive to using
low weights or ignoring attributes that are significant for a
match.

A. A Graph Based Approach

SBGRL utilizes a graph based data structure. At the base
of this structure is a date and a location. Combined, these
form an significant event. A significant event is a unique
occurrence in one’s life, e.g. a birth, marriage or death.
Assuming the probability that two unique people share this
exact event is relatively the same among all given significant
events, then each significant event that matches between to
pedigrees should carry approximately the same amount of
weight in a prediction model. This can be accomplished by

creating a collection of events and using summarative scores
to represent the collection. In SGRL, we chose the following
summarization scoring mechanisms:

• Maximum score
• Minimum score
• Standard deviation
• Number of comparison scores above a threshold
• Number of comparison scores below a threshold

In GRL, there are many comparisons that have one-to-
many relationships that can be combined to form aggregates
(i.e. location and date from a significant event) or collec-
tions(i.e. a set of events). For example, a person may remarry
multiple times and thus have a number of spouses; a person
may also have a large number of children, many siblings,
etc. By combining basic comparison types to form aggregate
comparators, then combining aggregate comparators to form
groups comparators, more advanced comparators can be
introduced.

In SGRL, this is done through stacking. Basic comparisons
are combined to make higher order comparisons by using
the basic comparisons’ output scores as input into a Multi-
layer Perceptron, commonly referred to as an artificial neural
network. The output of the neural network is a regression
probability score that summarizes its inputs. Output scores
from multiple models of the same type can then be summa-
rized using the summarative scores listed above. These sum-
marative scores then serve as inputs to a neural network that
can classify the collection. The complete stacking framework
is shown in figure 4.

Fig. 4. Aggregates of SGRL

Training examples are labeled such that a match has target
value 1 for the MATCH node and target value 0 for the
MISMATCH node, and the reverse for mismatches.



IV. EXPERIMENTAL RESULTS

MBGRL was created using Weka’s backpropagation learn-
ing algorithm(artificial neural network), with disproportional
weighting towards false negatives (type II error), due to
the bias inherent in the data (the 1:3 ratio of non-matches
to matches). A validation set of 10% of the training set
was applied to preserve generality and discover the optimal
model. This model preformed significantly better than other
learning algorithms on the same flat table; however, it was
sensitive to the large number of unknown values, as well as
having too large of an attributes per records ratio.

As a result, we turn our attention to a graph based stacking
approach as an alternative. By treating the data as a graph,
rather than a flat table, we are able to generalize rules to
combine attributes at each level, thereby preforming feature
reduction. Attributes that may have been ignored due to
the spareness of instances with that attribute were able to
carry a heavy influence on such statistics as best event score.
Furthermore, the model is more general, and can handle new
attributes that fit into the higher level aggregates (i.e. a bar
mitzvah record can be compared to a pedigree, even though
the model had no training instances of that particular event
since the model treats all events the same). The resulting set
of attributes in the final stage is significantly reduced, and
the resulting model suffers the effects of over-fitting less due
to too many attributes.

The genealogical database used in our experiments was
provided by the Family and Church History Department
(FCHD) of The Church of Jesus Christ of Latter-day Saints.
The database consists of a set of pedigree comparisons,
where each pedigree comparison is labeled as either being
a “match” or “non-match.” The distribution of matches to
non-matches is approximately 1:3 (i.e., 1 match for every 3
non-matches), or approximately 25% matches. The database
contains over 16,000 labeled pedigree comparisons, split
evenly into 3 sets. Sets 1 and 2 are used for all training,
and initial testing purposes using 10 fold cross validation.
Set 3 is held as a final test set used to verify the algorithms
that show promise in sets 1 and 2.

The database consists of names of people (e.g., “Jane
Doe”), relationships (father, mother, sibling, child, spouse),
and events (birth, christening, marriage, burial, etc.). Block-
ing on the database was performed previously by the FCHD
so that only pairs that are very similar are left in the provided
database. The database has also been heavily standardized,
meaning it has gone through several data cleaning and
attribute-level reconciliation algorithms that have made every
attribute conform to some standard form. For example, all
abbreviations and misspellings in the city attribute have
been converted to actual, full and unabbreviated city names.
Finally, as explained previously, SGRL consolidates over 300
original attribute comparisons to 12 normalized attributes.

Once the multi-tiered artificial neural network has been
induced (see above), the test set is run through it (the first
time that set is used for any purpose). The combination of
our metric-based algorithms results in high accuracy, F-score,

TABLE IV

CONFUSIONMATRIX FOR MBGRL

Predicted
0 1

Actual 0 3,719 65
1 102 1,276

TABLE V

SUMMARY STATISTICS

Summary MBGRL SGRL
Actual Matches 1,378 [Pending]
Actual Mismatches 3,784 [Pending]
Total Comparisons 5,162 [Pending]
Match/MismatchRatio 0.3642 [Pending]
Accuracy 0.9676 [Pending]
Precision 0.9260 [Pending]
Recall 0.9515 [Pending]
F-score 0.9386 [Pending]

precision, and recall as shown in Tables IV and V. Table IV
is the confusion matrix (0 stands for Mismatch and 1 stands
for Match), and Table V summarizes the main quantities of
interest.

Fig. 5. Precision-Recall Curves of SGRL & MBGRL

Experiments with other machine learning, including arti-
ficial neural networks, logistic regression, C&R Tree, and
CHAID, result in lower accuracy and F-score than the
backpropagation algorithm in MBGRL..

V. I NTEGRATION IN GENESIS

After testing and finding a SGRL model that had high
performance measures, the SGRL model was serialized and

TABLE VI

CONFUSION MATRIX FOR SGRL

Predicted
0 1

Actual 0 [Pending] [Pending]
1 [Pending] [Pending]



included as an updateable plugin to the open source geneal-
ogy project names Genesis. Genesis uses SGRL by searching
numerous online genealogical repositories for information
related to a pedigree, and then scores the relevancy of the in-
formation according to SGRL. Information with a high score
is automatically combined, low scores are discarded, and a
range of scores in between are ranked and flagged for human
review. Source code is available at www.dtfproject.org.

VI. CONCLUSION

Details of the results of SGRL are still pending. Our
work on record linkage is ongoing. Finding ways to increase
sensitivity on the basic metrics of name comparisons, date
comparisons, and location comparisons may show further
improvements. Innovative solutions to the one-to-many com-
parison problem are also promising. We are also exploring
the use of Markov Logic Networks [4] within our sparse
and uncertain genealogical context. Finally, choosing 3 target
attribute values ofmatch, mismatchand unknown: needs
human intervention, and optimizing for these values, may
prove more appropriate for many genealogical record linkage
contexts.
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