Interactive Smoothing of Handwritten Text Images Using a Bilateral Filter

Oliver A. Nina, Bryan S. Morse
Brigham Young University
The Problem

- An increasing number of people are using text images
- Volunteers read text images to index important information
- Many of the images are unreadable due to quality and age of the documents
- Artifacts in the images include background noise and undistinguishable ink strokes
The Problem

<table>
<thead>
<tr>
<th>Name</th>
<th>Place</th>
<th>Date</th>
<th>Age</th>
<th>Where interred</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charlotte Pels</td>
<td>Leominster</td>
<td>Feb 12th 37</td>
<td></td>
<td>Ilton</td>
</tr>
<tr>
<td>William Stafford</td>
<td>Hope</td>
<td>April 15 94</td>
<td></td>
<td>Ilton</td>
</tr>
<tr>
<td>Edward Gough</td>
<td>Headmaster</td>
<td>April 15 76</td>
<td></td>
<td>Ilton</td>
</tr>
<tr>
<td>Thomas Smith</td>
<td>Hill Hole</td>
<td>April 26 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thomas Gutter</td>
<td>Newton</td>
<td>May 1st 67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humphreystone</td>
<td>The Hill</td>
<td>June 15th 64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>John Mellish</td>
<td>The Park</td>
<td>June 19th 70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elizabeth Bath</td>
<td>The Valley</td>
<td>June 29th 60</td>
<td></td>
<td>Ilton</td>
</tr>
</tbody>
</table>
The Solution

• We improve image visibility by,

• Using a bilateral filter to even out the noise in the background

• Accentuating weak stroke pixels to make them more visible (Laplacian)

• We can apply interactively the algorithm in desired regions

• We adjust the parameters of the algorithm to improve results
The Solution

<table>
<thead>
<tr>
<th>Name</th>
<th>Abode</th>
<th>When died</th>
<th>Ap</th>
<th>Nr where the entry was performed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charlotte Dale</td>
<td>Leominster</td>
<td>Feb 23rd 37</td>
<td>1st</td>
<td></td>
</tr>
<tr>
<td>William Stafford</td>
<td>Hope</td>
<td>Apr 12th 94</td>
<td>1st</td>
<td></td>
</tr>
<tr>
<td>Edward Gough</td>
<td>Woodmanton</td>
<td>Apr 13th 73</td>
<td>1st</td>
<td></td>
</tr>
<tr>
<td>Thomas Smith</td>
<td>Hill Hole</td>
<td>Apr 12th 100</td>
<td>1st</td>
<td></td>
</tr>
<tr>
<td>Thomas Grafton</td>
<td>Neutra</td>
<td>May 1st 67</td>
<td>1st</td>
<td></td>
</tr>
<tr>
<td>James Portland</td>
<td>The Dell</td>
<td>June 1st 64</td>
<td>1st</td>
<td></td>
</tr>
<tr>
<td>John Mellichi</td>
<td>The Park</td>
<td>June 19th 10</td>
<td>1st</td>
<td></td>
</tr>
<tr>
<td>Elizabeth Bath</td>
<td>The Village</td>
<td>June 1st 60</td>
<td>1st</td>
<td></td>
</tr>
</tbody>
</table>
Background

Bilateral Filter (Tomasi et al. 1998)
- Smooths regions while preserving edges
Background - Bilateral Filter

- It uses 2 weighting functions

- $G_s = \text{spatial normal distribution}$

- $G_r = \text{range (color) normal distribution}$
Background - Bilateral Filter

We combine the two weighing functions and we have:

\[I'_p = \sum G_s(|p - q|) \cdot G_r(|I_p - I_q|) \cdot I_q / W_p \]

where

\[W_p = \sum G_s(|p - q|) \cdot G_r(|I_p - I_q|) \]

(a) (b) (c)
Background

Laplacian Filter

• Calculates the 2nd derivative of the image (edge detection)

\[
\begin{pmatrix}
0 & -1 & 0 \\
-1 & 4 & -1 \\
0 & -1 & 0
\end{pmatrix}
\quad
\begin{pmatrix}
-1 & -1 & -1 \\
-1 & 8 & -1 \\
-1 & -1 & -1
\end{pmatrix}
\]

• We combine it with the bilateral filter to augment soft strokes
Our Algorithm

- We identify if the mouse is over an edge (ink stroke)
 - The Laplacian filter gives us zero crossings
- We apply the bilateral filter on mouse_down and mouse_move events
- If we are over an edge, we darken the stroke
- Otherwise, we make the background lighter
Results

Original Image

Result ($G_r = 3$, $G_s = 5$)

Result ($G_r = 3$, $G_s = 10$)

Result ($G_r = 3$, $G_s = 15$)
Results

Original Image

Result ($G_r = 3$, $G_s = 5$)

Result ($G_r = 3$, $G_s = 10$)

Result ($G_r = 3$, $G_s = 15$)
Results

Original Image

Result - Accentuated Strokes
Conclusion

• We applied the Bilateral filter and Laplacian to solve the problem of low quality text images.

• Results are promising and indicate that;

• Bilateral filter is robust and smooths text images without losing important pixels.

• Edge enhancement can make faint text more readable.
Further Work

• Improve identifying the edges better, using a better edge detector.

• Automatically select the parameters to work with the bilateral and laplacian filters.

• Use the bilateral filter for text segmentation of old document images.
Questions?