
Analyzing the Family Tree

Daniel W. Rapp
FamilySearch

50 E North Temple St.
Salt Lake City, UT

rappdw@familysearch.org

Michael P. Jones
FamilySearch

50 E North Temple St.
Salt Lake City, UT

jonesmp@familysearch.org

ABSTRACT
FamilySearch holds one of the largest collections of linked
family history data in the world. Nearly one billion records
of individuals, both deceased and living, have been recorded
and placed together into a common tree (“The Family Tree”).
The study of this ancestral relationship graph consists of the
largest family history network ever analyzed. We have found
a number of interesting properties in the network using com-
mon graph analysis techniques.

We examine the topology of the graph by calculating the
connected components within the graph. The total network
consists of one giant component consisting of many millions
of records plus millions of very small components. We also
describe how this topology has changed over time. The pa-
per further describes how an analysis of the strongly con-
nected components and the graph’s diameter can be used
to assess the quality of the data. Finally, we describe a
heuristic algorithm to determine the “connectedness” of our
patrons and find that those who have logged into the system
are significantly more connected than those that have not.
One third of the potential users are connected to the giant
component while 80% of the active users are. We discuss
how this analysis could potentially be used to partition the
graph to support scaling or distributing the system.

Categories and Subject Descriptors
G.2.2 [Mathematics of Computing]: Numerical Analy-
sis—Graph Theory

General Terms
Family History, Relationship Graph

1. INTRODUCTION
In 2002, FamilySearch began a project to collect all of its

family history data sources, detect duplicate records (i.e.,
those that identified the same individual across these vari-
ous data sources), and combine the result into an authori-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
RootsTech Technology Workshop February 2012, Salt Lake City, UT
.

tative view of the family history information that has been
collected over the course of many years. The goal was to
compile and curate the common pedigree of mankind. The
result of this effort is known as the “Family Tree” which
represents the largest lineage-linked record of the history of
mankind – currently containing approximately one billion
records.

To date, the Family Tree has only been available to se-
lected users, although efforts are underway to make it pub-
licly available. This user base is referred to as “patrons”
of the system. Not all users have taken advantage of this
system; those that have done so are referred to as “active
patrons.” The Family Tree continues to grow and evolve
through contributions by active patrons and internal pro-
cesses.

The resultant data set is a rich source of information. Be-
cause it is a pedigree the inclination might be to model this
data as a tree. However, the complexity of the data set
suggests that it is more properly modeled as a graph. The
complexity in the data arises from two primary reasons. Hu-
man relationships are often more complex than a single set
of parent-child and spousal relationships, e.g. adoptions,
divorces, etc. Also, discrepancies have been introduced by
algorithmic and human error while combining records. In
the graph model, the vertices represent individuals and the
edges represent different relationships (e.g. spousal, parent
child, etc.) between individuals.

With this relationship graph in place, it becomes interest-
ing to utilize some of the standard tools in network analysis
to examine family history data. In this paper, we present
the methodology and system employed to examine the fam-
ily history network. We present findings that are of interest
both from a genealogical perspective and from the perspec-
tive of a computer scientist.

2. METHODOLOGY/PROCESS
The family tree is stored in a large RDBMS system. The

data model for the family tree is beyond the scope of this
paper, but suffice it to say that the relationships are mod-
eled much as you would expect. Namely there is a rela-
tionship table that contains the relationship type and the
unique identifiers of the records participating in the relation-
ship. Very early on, we determined that performing graph
analysis against the database was simply too expensive (in
terms of time spent waiting for the DB to respond). We
began development of a distributed graph service consist-
ing of a number of commodity class servers that each held
a portion of the graph in memory. We then implemented

distributed algorithms to compute various graph properties
[7, 6, 3]. This approach proved to be an effective represen-
tation of the graph, particularly for drawing pedigrees and
calculating relationships between individuals.

However, for many of the analyses we wanted to perform
(namely those described in this paper), it became evident
that the machinery involved in working with a distributed
graph was simply too heavy-weight to allow for effective
analysis. In fact, all that was needed for much of this anal-
ysis was simply the graph structure. We were introduced to
the WebGraph [2] framework in late 2008. WebGraph pro-
vides a highly optimized graph representation that allows
us to represent our nearly one billion node graph and nearly
one and a half billion relationships on a single 8-core ma-
chine with 16GB memory. All the analyses described in this
paper were performed on that one machine.

Many of the algorithms we use are the standard algo-
rithms for computing various graph properties and most are
available as part of WebGraph. We have modified a few of
the algorithms to run in the memory constraints imposed by
the hardware we are using. We have also developed a few
algorithms that are unique to the application of network
analysis to the realm of family history. (We have included
a modification to Tarjan’s algorithm that uses less memory
and our heuristic diameter approximation algorithm in the
Appendix.)

We construct seven distinct graphs for different types of
analysis. All graphs have the same set of vertices but differ-
ent edges.

Graph Designation Description of Edges Size
C directed, child to parent 1.7 GB
P transpose of C 1.7 GB
CP union of C & P 4.0 GB
H directed, husband to wife 0.7 GB
W transpose of H 0.7 GB
HW union of H & W 1.2 GB
U union of CP & HW 4.0 GB

Table 1: Distinct Graphs

Because our relationships (child to parent, husband to
wife) are directed, we find it useful for some analysis to
use the transpose of the “natural” direction and to use the
union of a graph and its transpose to simulate an undirected
graph. Thus the three union graphs may be though of as
undirected graphs and the other graphs as directed graphs.

3. RESULTS

3.1 Connected Components (Distinct Trees)
A graph can be partitioned into components such that

each vertex within a component can be reached from all
other vertices in that component by following undirected
edges. This is illustrated in Figure 1 and Figure 2.

One of the stated purposes of FamilySearch is to provide a
common pedigree to facilitate collaborative work on family
history. A key factor on whether this is facilitated can be
measured by how many disjoint trees there are in the system.
If there is a single common tree then all additions can be
effectively shared. If patrons are working in disjoint trees
then the collaborative possibilities diminish. The number of

Figure 1: Sample Family History Graph

Figure 2: Connected Components of Graph

disjoint trees can be identified by computing the connected
components of a the graph.

Tarjan’s algorithm is the standard algorithm for comput-
ing connected components. There is an implementation of
Tarjan’s algorithm in WebGraph. Unfortunately, this im-
plementation will exhaust memory on the hardware we have
available (16 GB main memory). In order to compute the
connected components, we have implemented a slight varia-
tion on Tarjan’s algorithm that requires less memory at the
expense of more execution time. (See Appendix A)

In order to identify the connected components of the fam-
ily tree, we use the U graph as input. We find that there is a
giant component that consists of about 20% of the vertices
in the graph. Additionally there is a large number of trees of
size 1, 2, or 3. Collectively, these trees hold approximately
63% of the vertices. This is largely an artifact of the extrac-
tion projects in which vital records are indexed and added
to the Family Tree. These disjoint trees are an indication
of work to be completed; specifically, they need to be joined
into the common tree. Finally, there is a large number of
trees that hold anywhere from 4-20k records. The remain-
ing 17% of the vertices are in trees of these sizes. Figure 3
shows the distribution of the number of trees of given sizes.

Figure 3: Tree Size Distribution

Figure 4 shows how the percentages of records contained

Figure 4: Changes in Trees Over Time

within various tree sizes have changed over time. It is signif-
icant to note that the giant component has increased from
holding 16% of the records to holding 20% of the records.
This is a desired result in the system in that it is indicative
of better collaboration.

3.2 Strongly Connected Components (Loop-
ing Pedigrees)

Another property of graphs is the identification of strongly
connected components. These are the components of the
graph in which each and every vertex can reach all other
vertices within that component by following directed edges,
as depicted in Figure 5.

Figure 5: Strongly Connected Components of Graph

If we run Tarjan’s algorithm against the C graph instead
of the U graph, we identify pedigrees that are looping or tan-
gled. Obviously it is impossible for me to be my own grandpa
in a biological sense, but it is possible in the broader context
of the graph (when step-parent relationships are considered
as in the old song “I’m my Own Grandpa” [10]). It is also
possible due to human or algorithm error as trees and/or
records are merged and invalid or impossible relationships
are introduced.

Running the algorithm identifies a moderate number of
looping pedigrees with the number of records participating
in looping pedigrees following a power law like distribution
with an extremely long tail as shown in Figure 6.

The number of records involved in looping pedigrees is
minimal (0.06%), but has been increasing. (An increase
from 0.05% in June of 2010 to 0.06% in October of 2011.)
For the most part, we would not expect loops in the rela-
tionship graph and thus the analysis gives insight into the
quality of the data.

3.3 Diameter Analysis
The diameter of the graph is the number of arcs between

Figure 6: Distribution of number of looping pedi-
grees against size of loop

the two vertices in the graph that are furthest apart. Com-
puting the diameter of a large graph is an expensive (execu-
tion time) operation and therefore not practical. Typically
heuristics must be used to approximate the diameter of large
graphs to make the calculation computationally tractable.
While we examined the heuristics developed by other re-
searchers[5], we found that the nature of our data leads to
a novel heuristic.

Our patrons are represented as records in the common
pedigree. Because these records represent currently living
individuals, they are likely to be on or very near an edge of
the graph. Therefore, it seems reasonable that at least one
of those records would likely be on the graph’s diameter.
Starting with an input set of patron records, concurrently
crawl back from that set in the C graph. The longest path
encountered in this method is an approximation of the di-
ameter. (A pseudo code implementation of this algorithm
is found in Appendix B.) This is only an estimate of di-
ameter as we can not ensure that the diameter runs from
one of the vertices in the input set. Additionally, in or-
der to speed computation, we short circuit retrying partial
paths that have already been encountered without regard to
whether they may indeed be part of a longer chain from the
one which they were initially computed.

This heuristic yields a number of furthest ancestor records.
This set of records can in turn be used as input to the algo-
rithm, however using the P graph rather than the C graph.
Performing this extra step reveals several things. First, our
heuristic was a good estimator. Second, there are longer
paths to be found because neither end of the diameter is
actually in our initial input set.

Using our algorithm, we estimate the diameter of the giant
component of the graph as 286. The diameter of the entire
graph comes from one of the disconnected trees and is 400+.
It represents someone’s private conjecture of Hawaiian roy-
alty with ancestry of which most predates historical records
and some predates biblical records.

In examining some of the longer paths found in the graph,
we find that this analysis is a good detector of apocryphal
or even fictional data that has been added to FamilySearch.

3.4 “Connectedness” of Patrons
One of our early applications of graph analysis was the

exploration of algorithms to efficiently calculate how two
individuals are related. While that work is beyond the scope

of this paper, we did notice an interesting property. Many
cases showed surprisingly close relationships. In almost all
cases common ancestors were found within a 12 generation
horizon of the input parameters. While some of this was due
to data quality issues, 1 many of the discovered relationships
were indeed valid. In many ways this is similar to some of
the other“degrees of separation”experiments [1, 8] that have
been conducted.

We conducted an analysis to see how rapidly our patron
set converges into a common “extended family”. The algo-
rithm employed is:

1. Begin with a set of vertices determined by some heuris-
tic. These are the partition sets at generation n0. This
partitioning will not cover the entire graph. At this
point, each vertex represents a partition that contains
only itself.

2. For each partition, take all vertices in that partition
and follow all out edges, adding encountered vertices
to that partition. If another partition is encountered,
merge the partitions.

3. The partitions resulting from this become the input set
for the next iteration (partition sets at generation n0+
1) and represent a partial partitioning of the graph.

4. Repeat for n iterations (generations).

There are a number of useful properties in this analysis
including: the number of partitions of the graph at each
step; the number of total elements covered by the partial
partitioning at each step; the percentage of the initial seeds
that reside in a given partition. Both the rate of reduction of
partitions and the extent of reduction of partitions indicate
the degree of “connectedness” of the input seed set. The
total number of elements covered indicate the connectedness
to the heart of the graph at large. The percentage of initial
seeds that reside in the same partition is an indication of
how well this heuristic works at uniformly partitioning the
graph. Ideally, the input seeds would be evenly distributed
among partitions after n steps.

To compare how rapidly our patron set converges into
a common “extended family”, we begin with two different
initial partition sets. The first is a set of vertices randomly
selected from the graph. The second is the set of patrons of
the system. We ran this algorithm over both the entire graph
and over just the giant component. We also ran the analysis
over the C graph and the U graph. We present results from
running over the giant component of the C graph for brevity
and as the results were similar. Also, the results from the
U graph represent results similar to social networks as the
addition of spousal links tend to join disparate “extended
families” resulting in both a greater and quicker convergence
as well as a significantly higher coverage of the graph.

Figure 7 shows a significant difference in how quickly pa-
trons merge into “extended families” when compared to a
randomly selected sample of initial seeds. Another way of
looking at the data is to determine what percentage of the
seed set resides in the largest “extended family” at each it-
eration as indicated in Figure 9.

1As pointed out in the details of the strongly connected
component section, i.e. anyone that connects into one of the
strongly connected components of the graph will be related
to all others that also connect into that component

Figure 7: Number of Partitions (Giant Component)

Figure 8: Number of Records in Partitions (Giant
Component)

Having nearly 75% of our patrons within the same “ex-
tended family”within 4 generations shows a remarkable level
of connectedness.

3.4.1 Application: Graph Partitioning
A potential interesting area of application for this analysis

is whether or not this would facilitate a partitioning of the
graph. Graph partitioning is interesting because many web-
scale applications use data partitioning for providing better
scale characteristics.

We can examine an “extended family” scheme, for its suit-
ability as a potential partitioning strategy that would sup-
port multi-generational display. Four generations is a com-
mon limit for multi-generational display. Ideally, such a par-
titioning would be uniform. While seeding the algorithm
with random seeds yields promising results, the high degree
of “connectedness” of our patrons works against this. If we
were to use strictly the “extended family” approach to par-
tition the graph for a 4 generation display, we would find
that just over half of our active patrons would be in the
same partition. Relying solely on this heuristic does not

Figure 9: Percentage of Seeds in Largest Extended
Family

yield a uniform partitioning with 65% of the initial patron
seeds ending up in the same partition after 3 iterations. (See
Figure 9) Thus we could at best hope for only a 2x scaling
capability.

4. CONCLUSIONS
The idea of applying graph analysis to the study of hu-

man relationships is not new, but has generally focused on
social relationships rather than familial relationships[8, 1,
9]. While connected component analysis has similar mean-
ing and importance in both contexts, strongly connected
components and diameter analysis provides unique insights
into the familial relationship graph. Not surprisingly the
connected component analysis of the Facebook social net-
work demonstrated similar distribution of component sizes
as did the analysis of the Family Tree as they both have
small world graph properties, e.g. high degree of connected-
ness, small diameter compared to number of vertices, etc.[4]

In social networks, strongly connected components are
expected or even desired. In a lineage network, strongly
connected components are neither desired nor represent a
possible truth state in general. We have shown that easily
computed graph properties may be used to identify quality
issues in genealogical data. Additionally, we have shown how
graph analysis can verify that our system is achieving one of
its stated purposes, namely curating a common family tree.

We applied a heuristic approach to partition the graph
to look at system scalability design goals. We found that
this heuristic would only allow us to bifurcate the working
set, thus yielding roughly a 2x improvement in scale. This
result alone does not show much promise. Further investiga-
tion may be warranted to determine whether this approach,
together with other heuristics may prove fruitful for our ap-
plication. Nevertheless, this analysis did provide insights
into how closely connected our patrons are within the Fam-
ily Tree.

5. REFERENCES
[1] L. Backstrom, P. Boldi, M. Rosa, J. Ugander, and

S. Vigna. Four degrees of separation.
http://arxiv.org/abs/1111.4570, November 2011.

[2] P. Boldi, M. Santini, and S. Vigna. A large time-aware
web graph. SIGIR Forum, 42(2):33–38, 2008.

[3] J. Bondy. Graph theory. Springer, New York, 2008.

[4] M. Buchanan. Nexus : small worlds and the
groundbreaking science of networks. W.W. Norton,
New York, 2003.

[5] U. Kang, C. Tsourakakis, A. P. Appel, C. Faloutsos,
and J. Leskovec. Hadi: Fast diameter estimation and
mining in massive graphs with hadoop.
http://reports-archive.adm.cs.cmu.edu/anon/

ml2008/CMU-ML-08-117.pdf, 2008.

[6] D. Knuth. The Art of Computer Programming,
Volume 4a: Combinatorial Algorithms, Part 1.
Addison-Wesley Professional, Reading, 2011.

[7] N. Lynch. Distributed algorithms. Morgan Kaufmann
Publishers, San Francisco, Calif, 1996.

[8] S. Milgram. The Small World Problem. Psychology
Today, 2:60–67, 1967.

[9] J. Ugander, B. Karrer, L. Backstrom, and C. Marlow.
The anatomy of the facebook social graph.
http://arxiv.org/abs/1111.4503, November 2011.

[10] Wikipedia. I’m my own grandpa. http:
//en.wikipedia.org/wiki/I’m_My_Own_Grandpa.

APPENDIX
A. ALGORITHM FOR DETERMINING CONNECTED COMPONENT
BitSet vert icesThatHaveBeenProcessed = new BitSet (graph . numNodes ()) ;
Deque<Integer> verticesToProcessForCurrentComponent = new ArrayDeque<Integer >() ;
for (int i = 0 ; i < graph . numNodes () ; i++) {

i f (vert icesThatHaveBeenProcessed . get (i)) {
continue ;

}
verticesToProcessForCurrentComponent . add (i) ;
vert icesThatHaveBeenProcessed . s e t (i) ;
int componentSize = 1 ;
// . . . i d e n t i f y i n g a new component
while (verticesToProcessForCurrentComponent . s i z e () > 0) {

f ina l int ver tex = verticesToProcessForCurrentComponent . removeFirst () ;
// . . . record the f a c t t ha t v e r t e x be longs to current component (i f d e s i r ed)
f ina l Lazy In t I t e r a t o r s u c c e s s o r I t e r a t o r = graph . s u c c e s s o r s (ver tex) ;
int s u c c e s s o r ;
while ((s u c c e s s o r = s u c c e s s o r I t e r a t o r . next Int ()) != −1) {

i f (! vert icesThatHaveBeenProcessed . get (su c c e s s o r)) {
vert icesThatHaveBeenProcessed . s e t (s u c c e s s o r) ;
verticesToProcessForCurrentComponent . add (su c c e s s o r) ;
componentSize++;

}
}

}
// . . . i d e n t i f i e d component o f s i z e : componentSize , record t h i s f a c t (i f d e s i r ed)

}

B. ALGORITHM FOR DIAMETER ANALYSIS
class Traversa lContext {

f ina l int ver t ex Id ;
f ina l Big Intege r pathLength ;
Traversa lContext (int vertexId , B ig Intege r pathLength) {

this . v e r t ex Id = ver tex Id ;
this . pathLength = pathLength ;

}
public int getVertexId () {

return ver t ex Id ;
}
public Big Intege r getPathLength () {

return pathLength ;
}

}

Big Intege r diameterApproximation = Big Intege r . valueOf (Long .MAXVALUE) ;
BitSet v i s i t edNodes = new BitSet (graph . numNodes ()) ;
Deque<TraversalContext> workQueue = new ArrayDeque<TraversalContext >() ;
// . . . i n i t i a l i z e the workQueue with the v e r t i c e s t ha t are in the input s e t
while (workQueue . s i z e () > 0) {

Traversa lContext context = workQueue . removeFirst () ;
i f (v i s i t edNodes . get (context . getVertexId ())) {

continue ;
}
v i s i t edNodes . s e t (context . getVertexId ()) ;
diameterApproximation = context . getPathLength () . min (diameterApproximation) ;
Lazy In t I t e r a t o r s u c c e s s o r I t e r a t o r = graph . s u c c e s s o r s (context . getVertexId ()) ;
int s u c c e s s o r ;
while ((s u c c e s s o r = s u c c e s s o r I t e r a t o r . next Int ()) != −1) {

f ina l Big Intege r newPathLength = context . getPathLength () . add (B ig Intege r .ONE) ;
workQueue . add (new Traversa lContext (succe s so r , newPathLength)) ;

}
}
// . . . a t t h i s point , diameterApproximation conta ins our b e s t guess at the diameter

